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Abstract

We consider the exact computation of matrix eigenproblems in residue class rings for
solving systems of algebraic equations. We construct multiplication tables using a Gröbner
basis of a zero-dimensional ideal. Then, we analyze the tables by exactly computing their
Frobenius normal forms. The derogatoriness and the diagonalizability are determined by
the normal forms, and the problem is divided into four cases:

(1) nonderogatory and diagonalizable case,
(2) nonderogatory and nondiagonalizable case,
(3) derogatory and diagonalizable case,
(4) derogatory and nondiagonalizable case.

Subsequently, we construct common eigenvectors symbolically, and compute all the exact
zeros with their multiplicities. The result of empirical implementation is also shown.

1 Introduction

To solve a system of algebraic equations by computer algebra, the classical method of

general elimination has been studied as the computation of Lazard’s U -resultant [16][17].

Kobayashi et al. [14] showed an efficient algorithm for computing U -resultants by Gröbner

bases of zero-dimensional ideals. Their method computes the matrices Ax1 , . . . , Axs , which

are nowadays called multiplication tables, and obtains the U -resultant as det(u1Ax1 + · · ·+
usAxs) with new indeterminates u1, . . . , us.

On the other hand, Auzinger and Stetter [1] proposed a method for computing the

solutions of a system as the eigenvalues of certain matrices. At first they did not use
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Gröbner bases, but in these years, multiplication tables Ax1 , . . . , Axs are usually computed

by a Gröbner basis [25].

Stetter’s method intends to solve matrix eigenproblems by numerical analysis technique.

However, when the given polynomials have exact coefficients, the multiplication tables can

be computed exactly through a Gröbner basis. Hence, we may apply symbolic computation

technique to matrix eigenproblems. Takeshima and Yokoyama [27] proposed a symbolic

method for computing the eigenvalues and the eigenvectors by Frobenius normal forms of

matrices. Their method is very efficient because of avoiding arithmetic operations over

an algebraic extension field. In this paper, we extend their idea and give the algorithms

according to the properties of multiplication tables. Even though our exact computation

method needs much more CPU-time than numerical methods such as [6][7], it is completely

free from numerical errors. In particular, spurious multiple zeros, that is, simple zeros with

the same xi-coordinate, are exactly distinguished from genuine multiple zeros.

Our formulation gives the multiplicity of zeros at the same time as the computation of

their location. Möller and Stetter [19][20][26] show that multiple zeros are characterized by

the notion of a dual basis [18]. They consider a dual space and adopt a basis of differential

conditions that describe the local behavior of multiple zeros. To the contrary, we show

that it is enough for determining the location and the multiplicity of zeros to compute the

Frobenius normal form of a matrix. The detail of our formulation on multiple zeros has

been published as a separate paper [22].

We have implemented our method on the computer algebra system Reduce3.6 [12],

and we report the result of the computation of several examples. Finally, we discuss the

comparison with other methods and the efficiency of our method.

2 Basic Notions

2.1 Residue Class Ring and Multiplication Table

Let I = (f1, . . . , f`) be an ideal in a polynomial ring with rational number coefficients

R =Q[x1, . . . , xs]. It is well-known that an ideal I is zero-dimensional if and only if the

residue class ring R/I is finite-dimensional as a Q-vector space. The following theorem is

fundamental in the Gröbner basis theory [3][4].

Theorem 1 (Normal Set Basis)

Let G be a Gröbner basis of zero-dimensional ideal I with an arbitrary order. Then, the

set of power products

B := {xe1
1 · · ·xes

s | xe1
1 · · ·xes

s is irreducible with G}

is a linearly independent basis for R/I as a Q-vector space.



4 数式処理 第 7 巻 第 4 号 2000

Let B = {t1, . . . , tn} be the normal set basis for R/I in the above theorem. Then, it

is well-known that n coincides with the number of the zeros of I with their multiplicities

counted. We define the multiplication tables Axk
(k = 1, . . . , s) in R/I as follows.

Definition 2 (Multiplication Table for xk)

Compute the normal form of the product of xk and each ti (ti ∈ B) with G:

xk · ti 7→
n∑

j=1

aij · tj .

Then, the n × n matrix Axk
:= [aij ] is called the multiplication table for xk in R/I.

Since we consider polynomials in Q[x1, . . . , xs], the elements of Axk
become rational num-

bers, namely, aij ∈Q.

The following fact is important for analyzing the family of multiplication tables {Axk
}.

Lemma 3

The matrices Axk
’s are commutative, that is, Axk

Ax`
= Ax`

Axk
for every pair (k, ` =

1, . . . , s).

Now we consider the problem of solving a system of algebraic equations

f1 (x1, . . . , xs) = 0, . . . , f` (x1, . . . , xs) = 0, (1)

that is, the problem of finding all the zeros of an ideal I = (f1, . . . , f`). In this paper,

we restrict ourselves to the case where I is zero-dimensional, namely, the system (1) has

finitely many solutions. The relation between the zeros of I and the multiplication tables

{Axk
} is elucidated by the following theorem [1][28]. Therefore, the problem of solving a

system of algebraic equations is interpreted as a matrix eigenproblem.

Theorem 4 (Solutions by Matrix Eigenproblem)

Using one common regular matrix S, the commutative matrices {Axk
} are simultaneously

transformed into upper triangular forms Uk = S−1Axk
S (k = 1, . . . , s), where the di-

agonal elements of Uk are the eigenvalues of Axk
. Let the diagonal elements of Uk be

u
(k)
ii (i = 1, . . . , n). Then, all the zeros of I, counting their multiplicities, coincide with(
u

(1)
ii , u

(2)
ii , . . . , u

(s)
ii

)
(i = 1, . . . , n).

2.2 Frobenius Normal Form

In the following sections, we assume that the elements of a given matrix are rational

numbers: A = [aij ] , aij ∈Q. The following notions are well-known in the matrix theory.
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Definition 5 (Companion Matrix)

The following n × n square matrix

C =



0 1

0 0
. . . O

...
...

. . .
. . .

0 0 · · · 0 1
c0 c1 · · · cn−2 cn−1


(2)

is called the companion matrix associated with the polynomial f(x) = xn−cn−1x
n−1−· · ·−

c1x − c0. In particular, the companion matrix associated with the first degree polynomial

f(x) = x − c0 is the 1 × 1 square matrix [c0].

Lemma 6

The characteristic polynomial ϕC(x) and the minimal polynomial φC(x) of the companion

matrix C are equal to f(x).

Theorem 7 (Frobenius Normal Form)

Using a suitable regular matrix S, every n × n square matrix A can be transformed into

the block diagonal matrix as follows:

F = S−1AS = C1 ⊕ C2 ⊕ · · · ⊕ Ct. (3)

It is called the Frobenius normal form (or the rational normal form) of A. Each block matrix

Ci(i = 1, · · · , t) is an mi×mi companion matrix (2), and the associated polynomial ϕi+1(x)

of Ci+1 divides the associated polynomial ϕi(x) of Ci (i = 1, . . . , t− 1). The matrix in the

form (3) always exists and is uniquely determined for every given matrix. Moreover, the

minimal polynomial φA(x) of A is equal to ϕ1(x), and the characteristic polynomial ϕA(x)

of A is given by ϕ1(x) · ϕ2(x) · · ·ϕt(x).

Danilevskii [8] showed the method for computing a block diagonal matrix like (3), but

the result of his method did not necessarily satisfy the division condition

ϕt(x) | ϕt−1(x) | · · · | ϕ1(x),

hence his ϕ1(x) was not necessarily the minimal polynomial of A. However, the exis-

tence of strict meaning of the Frobenius normal form in Theorem 7 is shown in [11].

Our implementation is based on the algorithm given by [13], which eliminates the ma-

trix elements like Gaussian elimination by computing similar transformation step by step:

· · ·S−1
3

(
S−1

2

(
S−1

1 AS1

)
S2

)
S3 · · ·, and obtains F, S, S−1 in (3) finally.

Since Danilevskii’s method is numerically unstable, it had been abandoned in the field

of numerical analysis. However, on the assumption of exact computation, an efficient

algorithm for the symbolic solution of matrix eigenproblems using Frobenius normal forms

is proposed by [27]. The following lemmas are its straightforward extension.
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Lemma 8 (Eigenvector of a Companion Matrix)

Let λ be an eigenvalue of an n × n companion matrix C (2) and we put a vector u :=[
1, λ, λ2, . . . , λn−1

]T
. Then, this vector u is an eigenvector of C with the eigenvalue λ.

Proof Since λ is a root of the characteristic polynomial ϕC(x), we have

ϕC(λ) = λn − cn−1λ
n−1 − · · · − c1λ − c0 = 0.

Then, we obtain

Cu =



λ

λ2

...
λn−1

c0 + c1λ + · · · + cn−1λ
n−1


=



λ

λ2

...
λn−1

λn


= λu.

Note that, for the companion matrix C, there exists only one linearly independent eigen-

vector with the eigenvalue λ, even if λ is a multiple root of ϕC(x).

Lemma 9 (Eigenvector of a Frobenius Normal Form)

Let λ be an eigenvalue of a Frobenius normal form F (3), and let ϕi(x) be the associated

polynomial of Ci (i = 1, . . . , t). Suppose that λ satisfies ϕ1(λ) = · · · = ϕk(λ) = 0 and

ϕk+1(λ) 6= 0 for some k. (When k = t, the last condition should be omitted.) For

each block Ci with its size mi, we put vectors ũi :=
[
1, λ, λ2, . . . , λmi−1

]T (i = 1, . . . , k).

Extending them to the vectors of size n, we put

u1 :=



ũ1

0
...
...

0


, u2 :=



0

ũ2

0
...

0


, . . . , uk :=



0
...

0

ũk

0


, (4)

where the size of each zero vector corresponds to each companion block. Then, these k

vectors are eigenvectors of F with the eigenvalue λ.

Proof Apparently, the vectors u1, u2, . . . , uk are linearly independent. According to

Lemma 8, for each block Ci, we have Ciũi = λũi (i = 1, . . . , k). Since the matrix F is

block diagonal, it is easy to see that Fui = λui (i = 1, . . . , k).

Note that this lemma gives also the dimension k of the eigenspace of F belonging to the

eigenvalue λ, that is, k is determined to be such a number that ϕ1(λ) = · · · = ϕk(λ) = 0

and ϕk+1(λ) 6= 0.
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Lemma 10 (Eigenvector of a General Matrix)

Let F be the Frobenius normal form of a matrix A, and u be one of the eigenvectors (4)

of F having λ as the eigenvalue. Then, λ is also the eigenvalue of A. The corresponding

eigenvector of A is given by v := Su, where S is a similar transformation matrix such that

F = S−1AS (3).

Proof Since A and F are similar, they have the same eigenvalues in common. Moreover,

since we have Fu = λu and AS = SF , we obtain

Av = A(Su) = (AS)u = (SF )u = S(Fu) = S(λu) = λ(Su) = λv.

Therefore, v is an eigenvector of A having λ as the eigenvalue.

The construction by the above lemmas does not require solving a system of linear equations

(A− λE)x = 0 over an algebraic extension field Q(λ). We have only to reduce λ` in u by

the definition polynomial of λ as shown in the later examples. Thus, symbolic expressions

of eigenvalues and eigenvectors of a rational matrix can be efficiently computed.

2.3 Matrix Eigenproblem

When we consider a multiple eigenvalue of a matrix, we have to distinguish two kinds

of multiplicities.

Definition 11 (Algebraic Multiplicity)

Let λ be an eigenvalue of a matrix A. If λ is a p-fold root of the characteristic polynomial

ϕA(x) = det(A − xE), then it is called that λ has the algebraic multiplicity p.

Definition 12 (Geometric Multiplicity)

Let λ be an eigenvalue of a matrix A, and V (λ, A) be the eigenspace of A belonging to λ.

If the dimension of V (λ,A) is m, then it is called that λ has the geometric multiplicity m.

Note that the inequality m ≤ p always holds between the both multiplicities. The

following property of matrices is crucial in Stetter’s method.

Definition 13 (Nonderogatoriness)

If every eigenvalue of a matrix A has the geometric multiplicity 1, then A is called non-

derogatory.

Lemma 14 (Nonderogatory Matrix)

An n×n matrix A is nonderogatory if and only if its Frobenius normal form F consists of

only one companion block.
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This lemma is easily proved by Lemmas 8 and 9. Hence, we can determine the non-

derogatoriness of a matrix by computing its Frobenius normal form.

On the other hand, the diagonalizability of a matrix, which is fundamental in linear

algebra, is also determined by its Frobenius normal form.

Definition 15 (Diagonalizability)

If there exists a suitable regular matrix V for a matrix A such that V −1AV is diagonal,

then A is called diagonalizable.

Lemma 16 (Diagonalizable Matrix)

An n×n matrix A is diagonalizable if and only if its minimal polynomial φA(x) is square-

free.

The family of commutative matrices have the following property, which is applicable to the

multiplication tables.

Lemma 17 (Commutativity and Common Eigenvector)

Let matrices A, B be commutative: AB = BA. And let v be an eigenvector of A with the

eigenvalue λ, whose geometric multiplicity is 1. Then, this vector v is also an eigenvector

of B.

Proof Since we have Av = λv and AB = BA, we obtain

A(Bv) = (AB)v = (BA)v = B(Av) = B(λv) = λ(Bv).

Hence, Bv also belongs to the eigenspace of A with the eigenvalue λ. Since λ has the

geometric multiplicity 1, we have Bv ∈ span(v). Therefore, we obtain Bv = µv for a

certain scalar µ. This means that v is an eigenvector of B having µ as the eigenvalue.

3 Algorithms by Analysis of Multiplication Tables

Let n × n matrices Ax1 , . . . , Axs be the multiplication tables in Definition 2. We put

A := Axk
for an arbitrary variable xk.

First, we compute the Frobenius normal form F of A and a transformation matrix S

such that F = S−1AS. According to Lemmas 14 and 16, we determine the nonderoga-

toriness and diagonalizability of A. Then, we divide the problem into four cases, which

correspond to the following four subsections.

3.1 Nonderogatory and Diagonalizable Case

In this case, F consists of only one companion block C (2), that is, F = C. Since the

minimal polynomial φA(λ) = ϕC(λ) = λn − cn−1λ
n−1 − · · · − c1λ − c0 is square-free, the
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n eigenvalues λj (j = 1, . . . , n) are simple and distinct. Then, Stetter’s method (Theorem

4) can be directly applied to symbolic computation.

Algorithm 1 (Nonderogatory and Diagonalizable)

Initialize the list of solutions Sol := { }, and for j := 1 to n, do the following steps.

1) uj :=
[
1, λj , λ

2
j , . . . , λ

n−1
j

]T
.

2) vj := Suj .

3) Normalize the first element of vj to 1; (See Remark 1).

4) Let aT
(i)1 be the first row of Axi (i = 1, . . . , s), and compute a zero

zj =


z1j

z2j

...

zsj

 :=


aT

(1)1

aT
(2)1

...

aT
(s)1

 vj .

5) Sol := Sol ∪{zj}.

Proof From Lemma 8, uj is an eigenvector of F = C. Hence, vj is an eigenvector of

A from Lemma 10. Since λj has the geometric multiplicity 1, vj is a common eigenvector

of all the Axi ’s from Lemmas 3 and 17.

Corresponding eigenvalues are given by Axivj = µijvj . However, since the first element

of vj is normalized to 1, the first element of µijvj is µij itself. Hence, it is sufficient to

compute only with the first row of Axi ’s.

Remark 1

The first row of S becomes [1, 0, . . . , 0] in most cases because of the process of computing

the Frobenius normal form. Then, the first element of vj is already 1, and we do not need

to apply step 3) in practice.

If it happens to be 0, we have to select another non-zero element and utilize the corre-

sponding row of Axi ’s. However, we have not found such an example at present.

Example 1 (Example 1 in [6])
p1 = 3x2y + 9x2 + 2xy + 5x + y − 3
p2 = 2x3y + 6x3 − 2x2 − xy − 3x − y + 3
p3 = x3y + 3x3 + x2y + 2x2

According to the reference, we compute with gradlex order (x > y), and we obtain the

normal set basis B = {1, y, x}. Then, the multiplication tables are computed as follows:

Ax =

 1
−3 1 −1
3 −1 3

2

 , Ay =

 1
3
2

5
2 4

−3 1 −1

 .
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Computing the Frobenius normal form of Ax, we obtain

F =

 1
1

0 5
2

5
2

 , S =

 1
3 3

2 −1
1

 ,

hence, Ax is nonderogatory. The minimal polynomial of Ax is φ(λ) = λ3−(5/2)λ2−(5/2)λ,

which is square-free, then Ax is diagonalizable.

Let λ1, λ2 be the roots of λ2 − (5/2)λ− 5/2, and we get the eigenvectors of F with the

eigenvalues λ1, λ2, 0 respectively:

u1 =

 1
λ1

5
2λ1 + 5

2

 , u2 =

 1
λ2

5
2λ2 + 5

2

 , u3 =

 1
0
0

 .

Then, the eigenvectors of Ax are given by vj = Suj :

v1 =

 1
−λ1 + 1

2

λ1

 , v2 =

 1
−λ2 + 1

2

λ2

 , v3 =

 1
3
0

 .

Consequently, we obtain the 3 simple zeros: aT
(x)1

aT
(y)1

v1 =

[
0 0 1
0 1 0

]  1
−λ1 + 1

2

λ1

 =

[
λ1

−λ1 + 1
2

]
,

 aT
(x)1

aT
(y)1

v2 =

[
λ2

−λ2 + 1
2

]
,

 aT
(x)1

aT
(y)1

v3 =

[
0
3

]
.

3.2 Nonderogatory and Nondiagonalizable Case

In this case, F consists of only one companion block C (2), that is, F = C. Let the

minimal polynomial φA(λ) = ϕC(λ) = λn − cn−1λ
n−1−· · ·− c1λ− c0 have r (r < n) roots.

We let the algebraic multiplicity of each eigenvalue λj be pj (j = 1, . . . , r).

Algorithm 2 (Nonderogatory and Nondiagonalizable)

Initialize the list of solutions Sol := {}, and the list of multiplicities Mul := {p1, p2, . . . , pr}.
For j := 1 to r, do the following steps.

1) uj :=
[
1, λj , λ

2
j , . . . , λ

n−1
j

]T
.

2) vj := Suj .
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3) Normalize the first element of vj to 1; (See Remark 1).

4) Let aT
(i)1 be the first row of Axi (i = 1, . . . , s), and compute a zero

zj =


z1j

z2j

...

zsj

 :=


aT

(1)1

aT
(2)1

...

aT
(s)1

 vj .

5) Sol := Sol ∪{zj}.

Proof Since each eigenvalue has the geometric multiplicity 1, vj is a common eigen-

vector similarly to Algorithm 1. The multiplicities of each zero zj coincides with pj from

Theorem 4.

Remark 2

We obtain the locations and the multiplicities of all the zeros by this algorithm. For more

minute description of multiple zeros, see [22], which shows the formula for the simultaneous

transformation of the Axi ’s into upper triangular block diagonal forms.

Example 2 (Example 2 in [6]){
p1 = x2 + y2 − 1

p2 = (3x + 4y)2 + (−4x+3y)2

2 − 25

According to the reference, we compute with gradlex order (x > y), and we obtain the

normal set basis B = {1, y, x, y2}. Then, the multiplication tables Ax, Ay become 4 × 4

matrices. Computing the Frobenius normal form of Ax, we obtain

F =


1

1
1

− 81
625 0 18

25 0

 , S =


1

19
8 −625

216

1
1 −1

 ,

hence, Ax is nonderogatory. The minimal polynomial of Ax is

φ(λ) = λ4 − 18
25

λ2 +
81
625

=
(

λ − 3
5

)2 (
λ +

3
5

)2

,

which is not square-free, then Ax is nondiagonalizable.

The eigenvalues λ1 = 3/5 and λ2 = −3/5 respectively have the algebraic multiplicity

2 and the geometric multiplicity 1. Hence, both x = 3/5 and x = −3/5 constitute double
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zeros. Corresponding eigenvectors of F are

u1 =


1
3
5

9
25

27
125

 , u2 =


1

− 3
5

9
25

− 27
125

 .

Consequently, we obtain the 2 double zeros: aT
(x)1

aT
(y)1

 (Su1) =

 3
5

4
5

 ,

 aT
(x)1

aT
(y)1

 (Su2) =

 −3
5

−4
5

 .

3.3 Derogatory and Diagonalizable Case

We assume that the multiplication table Axk
is derogatory and diagonalizable. In

this case, we compute the Frobenius normal forms of other multiplication tables Axi (i =

1, . . . , s; i 6= k). If there exists at least one nonderogatory Ax`
, then we can let A := Ax`

and apply Algorithm 1 or Algorithm 2 according to its diagonalizability.

Now we consider the case where all the multiplication tables Axi (i = 1, . . . , s) are

derogatory. If there exists at least one nondiagonalizable Ax`
among them, then we have

to apply the case §3.4.

Otherwise, if all the Axi ’s are diagonalizable, the following theorem in linear algebra is

applicable to the family {Axi}.

Theorem 18 (Commutative and Diagonalizable Matrices)

Let A, B be commutative matrices: AB = BA. Moreover, we assume that both A and B

are diagonalizable. Then, there exists a set of common eigenvectors {v1, . . . , vn} of A and

B such that both V −1AV and V −1BV are diagonal, where V = [v1, . . . , vn].

To find such common eigenvectors for the family {Axi}, we put Aw :=
∑s

i=1 ciAi

with randomly selected integers ci. Then, Aw becomes nonderogatory for almost every

s-tuple (c1, . . . , cs) [28]. Since V −1AwV = V −1 (
∑

ciAi) V =
∑

ci

(
V −1AiV

)
, Aw is also

diagonalizable, then we can apply Algorithm 1 to Aw.

From the viewpoint of a system of algebraic equations, this situation corresponds to

the case where all the zeros are simple but some of them have the same xi-coordinate in

common. In such a case, we can make the system into general position by almost every

linear coordinate transformation w := c1x1 + · · · + csxs. Now we summerize the above

flow.
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Algorithm 3 (Derogatory and Diagonalizable)

% Assumption: The Axk
is derogatory and diagonalizable.

Compute all the Frobenius normal forms of the Axi ’s and apply one of the following.

% Case (A): Some Ax`
is nonderogatory.

Apply Algorithm 1 or 2 according to its diagonalizability.

% Case (B): All the Axi ’s are derogatory and some Ax`
is nondiagonalizable.

Apply the case §3.4.

% Case (C): All the Axi
’s are derogatory and diagonalizable.

Put Aw :=
∑s

i=1 ciAi with random (c1, . . . , cs) so that Aw is nonderogatory.

Then, apply Algorithm 1 to Aw.

Remark 3

• Since the selection of (c1, . . . , cs) is heuristic, this step is probablistic. Strictly speaking,

we should consider applying deterministic methods [23][28] for finding a generic tuple.

• In case (A), it is sufficient to find at least one nonderogatory matrix Ax`
. On the other

hand, in case (C), it is necessary to confirm that all the Axi ’s are diagonalizable.

• In order to characterize the matrix family {Axi}, we have to compute all the Frobenius

normal forms. Instead, only to find a nonderogatory one, it might be practical to start

on
∑s

i=1 ciAi directly. It is a trade-off with the cost where the sparsity is destroyed.

Example 3 (Cyclic 3rd Root)
p1 = x + y + z

p2 = xy + yz + zx

p3 = xyz − 1

We compute with gradlex order (x > y > z), and we obtain the normal set basis B =

{1, z, y, z2, yz, yz2}. Then, the multiplication tables Ax, Ay, Az becomes 6×6 matrices. The

Frobenius normal form of each matrix consists of 2 companion blocks, with the associated

polynomials ϕ1(λ) = ϕ2(λ) = λ3 − 1. This means that all of Ax, Ay, Az are derogatory

and diagonalizable. (They have naturally the same structure because of the symmetry of

variables x, y, z.)

Then, we try putting Aw := Ax + 2Ay − Az and computing its Frobenius normal form

F and a transformation matrix S such that AwS = SF . As a result, we obtain

F =



1
1

1
1

1
−343 0 0 −20 0 0


,
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thus, Aw is nonderogatory as expected. The minimal polynomial of Aw is

φ(λ) = λ6 + 20λ3 + 343 =
(
λ2 + 5λ + 7

) (
λ2 − λ + 7

) (
λ2 − 4λ + 7

)
,

which is square-free, then Aw is also diagonalizable.

Hence, we apply Algorithm 1 to Aw. We let the eigenvalues as follows:

λ11, λ12 are the roots of λ2 + 5λ + 7,

λ21, λ22 are the roots of λ2 − λ + 7,

λ31, λ32 are the roots of λ2 − 4λ + 7.

We put the eigenvectors of F as uij :=
[
1, λij , λ

2
ij , . . . , λ

5
ij

]T , and reduce each element

using the definition polynomials of λij (i = 1, 2, 3; j = 1, 2). Then, the eigenvectors of Aw

are given by vij = Suij . Using these 6 common eigenvectors, we obtain the 6 simple zeros:

 x

y

z

 =

 −λ1j − 3
λ1j + 2

1

 ,


1

1
3λ2j − 2

3

− 1
3λ2j − 1

3

 ,


1
2λ3j − 3

2

1
−1

2λ3j + 1
2

 (j = 1, 2).

3.4 Derogatory and Nondiagonalizable Case

In this case, all of the Axi ’s are derogatory, and some of them are nondiagonalizable.

We cannot immediately distinguish a multiple zero from simples zeros with the same xi-

coordinate. Therefore, we have to handle the system depending on the case.

In some cases, it is still effective to make a linear combination with random (c1, . . . , cs).

If we obtain a nonderogatory Aw =
∑s

i=1 ciAi, then we can apply Algorithm 1 or 2 to Aw.

The following example belongs to such a case.

Example 4 (Example 3 in [6])
p1 = x2 + y2 − 1
p2 = x3 + (2 + z)xy + y3 − 1
p3 = z2 − 2

According to the reference, we compute with gradlex order (x > y > z), and we obtain the

normal set basis with 12 elements. Then, this system has 12 solutions and the multiplication

tables Ax, Ay, Az become 12 × 12 matrices.

The Frobenius normal form of Ax contains 2 companion blocks, and its minimal poly-

nomial is

φAx(λ) = (λ4 − 2λ3 + λ2 + 8λ + 8)λ(λ − 1)
(
λ2 − 1/2

)2
,

hence, Ax is derogatory and nondiagonalizable. The matrix Ay has the same structure

as Ax. The Frobenius normal form of Az contains 6 companion blocks, and its minimal
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polynomial is φAz (λ) = λ2 − 2, hence, Az is derogatory but diagonalizable. However, the

family {Ax, Ay, Az} are not diagonalizable.

Then, we try putting Aw := Ax − Ay + Az and computing its Frobenius normal form.

Consequently, we find it nonderogatory and its minimal polynomial to be

φAw(λ) =
(
λ4 + 10λ2 + 32λ + 49

) (
λ2 + 2λ − 1

) (
λ2 − 2λ − 1

) (
λ2 − 2

)2
.

We let the eigenvalues as follows:

λ11, . . . , λ14 are the roots of λ4 + 10λ2 + 32λ + 49,

λ21, λ22 are the roots of λ2 + 2λ − 1,

λ31, λ32 are the roots of λ2 − 2λ − 1,

λ41, λ42 are the roots of λ2 − 2.

The eigenvalues λ41, λ42 have the algebraic multiplicity 2 and the geometric multiplicity 1.

Hence, the matrix Aw is nondiagonalizable, and we apply Algorithm 2 to it. Constructing

10 common eigenvectors, we obtain the following zeros:

 x

y

z

 =


− 1

52λ3
1j − 1

26λ2
1j + 25

52λ1j − 2
13

− 3
52λ3

1j − 3
26λ2

1j − 29
52λ1j − 19

13

− 1
26λ3

1j − 1
13λ2

1j − 1
26λ1j − 17

13

 ,

(j = 1, . . . , 4)

 0
1

λ2j + 1

 ,

(j = 1, 2)

 1
0

λ3j − 1

 ,

(j = 1, 2)


− 1

2λ4j

− 1
2λ4j

λ4j

 .

(j = 1, 2)

The first 8 zeros are simple, and the last 2 are double. In [6], the derogatoriness of Ax has

caused confusion and misled the 4 simple zeros with x = 0, 1 into 2 double zeros.

In other cases, we may fail to find a nonderogatory Aw by a linear combination∑s
i=1 ciAi. Such situation indicates the existence of multiple zeros, but it is difficult to

find common eigenvectors without heuristics. Therefore, we try to compute the radical
√

I

of the ideal I, because the locations of their zeros are coincident. The multiplicities can be

counted by comparing the characteristic polynomial in R/I and the minimal polynomial

in R/
√

I.

Note that all the Frobenius normal forms of the Axi (i = 1, . . . , s) have been already

computed, that is, we have obtained all the minimal polynomials of the Axi ’s at this point.

Then, the following facts are applicable.

Lemma 19 (Minimal Univariate Polynomial in I)

Let Axi be the multiplication table in Q[x1, . . . , xs] /I, where I is zero-dimensional. And

let φi(λ) be the minimal polynomial of the matrix Axi . Then, φi (xi) is the unique monic

univariate polynomial of minimal degree in I ∩Q[xi].

Theorem 20 (Theorem 8.22 of [2])

Let hi (xi) be the square-free part of φi (xi) in the above lemma. Then, we have
√

I =

(I, h1(x1), . . . , hs(xs)) .
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We have already computed the Gröbner basis G of the ideal I. Hence, we compute

again with a new (smaller) system {G,h1, . . . , hs}. Since all the zeros of
√

I are simple,

the family of new multiplication tables is always diagonalizable. Therefore, we can find a

nonderogatory matrix (by a linear combination, if necessarily).

Example 5 (Example 2 in [15])

For the polynomials f1 = x2 − xy − y2 + 1 and f2 = xy + 3y2 + 1, we define p1 := f2
1 − f2

2

and p2 := 2f2
1 + 3f2

2 . Here, We consider the zeros of the ideal I = (p1, p2).

We compute with gradlex order (x > y), and we obtain the normal set basis with 16

elements. Then, this system has 16 solutions and the multiplication tables Ax, Ay become

16 × 16 matrices.

The Frobenius normal form of Ax contains 2 companion blocks (12×12 and 4×4), and

its minimal polynomial is φAx(λ) =
(
λ4 + (28/11)λ2 + 16/11

)3
, hence, Ax is derogatory

and nondiagonalizable. Similarly, the Frobenius normal form of Ay contains 2 companion

blocks (12×12 and 4×4), and its minimal polynomial is φAy (λ) =
(
λ4 + (8/11)λ2 + 1/11

)3
.

In this case, we cannot find a nonderogatory matrix by a linear combination c1Ax + c2Ay.

For example, Aw := 3Ax + 7Ay has the same structure as Ax and Ay.

Now we compute the radical of I. Let qx := x4 + (28/11)x2 + 16/11, qy := y4 +

(8/11)y2 + 1/11, and we consider the system {G, qx, qy}, where G is the Gröbner basis of

I = (p1, p2). Eventually, the new matrix Āx is nonderogatory and its minimal polynomial is

φĀx
(λ) = λ4+(28/11)λ2+16/11. Consequently, we obtain the 4 simple zeros (i = 1, . . . , 4)

of
√

I: [
x

y

]
=

 λi

− 11
8 λ3

i − 2λi

 , where φĀx
(λi) = 0.

In this example, the ideal I is primary, therefore, each solution has the same multiplicity

16/4 = 4 by Theorem 3.3 in [15]. In fact, we have ϕAx(λ) = {φĀx
(λ)}4.

4 Implementation and Timing Data
We have implemented the above-mentioned algorithms on the computer algebra system

Reduce3.6. Gröbner bases are computed using the library package in Reduce, and Frobe-

nius normal forms are computed using the program written by the authors [21]. Using

IBM ThinkPad 535 (Pentium 120MHz processor) with 32MB memory, we solved several

problems. For comparison, we applied aslo the FGLM algorithm [10] using Reduce library

function GLEXCONVERT.

The detection of derogatory cases is not fully implemented yet. Random integers

(c1, . . . , cs) are heuristically selected, and the derogatoriness is manually determined af-

ter some trial and error.

In addition to the examples shown in the previous section, the following examples are
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computed. The timing data is shown in the Table 1.

Example 6 (Katsura 5)

This system has 32 simple zeros. We compute its Gröbner basis with revgradlex order

(u0 > u1 > · · · > u5). The result is rather dense.

Example 7 (Katsura 6)

This system has 64 simple zeros. We compute its Gröbner basis with revgradlex order

(u0 > u1 > · · · > u6). The result is very dense.

Example 8 (Cyclic 5th Roots from [10])

This system has 70 simple zeros. We compute its Gröbner basis with revgradlex order

(x1 > x2 > · · · > x5). The matrix for each variable is expected to have the same structure

analogously to Example 3.3. Therefore, after confirming that matrix Ax1 is derogatory and

diagonalizable, we omit the computation of the Frobenius normal forms of Ax2 , . . . , Ax5 .

Then, we put Aw := Ax1 −3Ax2 +5Ax3 −7Ax4 +11Ax5 and compute its Frobenius normal

form, to find it nonderogatory.

Example 9 (“A harder problem” in [7])

This system has 49 zeros (21 double and 7 simple). We compute its Gröbner basis with

revgradlex order (y > x). The matrix Ay is derogatory but Ax is nonderogatory, hence, it

is a good-natured problem.

Example 10 (Caprasse’s System from [10])

This system has 56 zeros (8 quadruple and 24 simple). Most zeros are mutually related

through the same coordinates in particular variables.

We compute its Gröbner basis with revgradlex order (t > z > y > x). We could not find

a nonderogatory matrix by a linear combination, for example, Aw := At+3Az−5Ay−7Ax.

Computing the radical, and putting Āw := Āt + 3Āz − 5Āy − 7Āx, finally we found a

nonderogatory matrix. The multiplicities are determined by comparing the characteristic

polynomial ϕw of Aw (in R/I) and the minimal polynomial φ̄w = ϕ̄w of Āw (in R/
√

I):

ϕw = ϕ4
1ϕ

4
2ϕ

4
3ϕ

4
4 × ϕ̃, φ̄w = ϕ̄w = ϕ1ϕ2ϕ3ϕ4 × ϕ̃,

where deg ϕi = 2 (i = 1, . . . , 4) and ϕ̃ is square-free.

5 Discussion

5.1 Comparison with other methods

The output of the proposed method is identical to the lexicographical Gröbner basis

in general position. For such a purpose, change of ordering methods have been stud-

ied. In particular, the FGLM algorithm is very efficient, and the Reduce library function

GLEXCONVERT solved all of the previous examples faster than our program, except for

“Katsura 6”, as shown in the Table 1.
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On the other hand, the rational univariate representation (RUR) method is proposed to

obtain a compact representation of the zeros, and its improvement is being studied [23][24].

From the viewpoint of practical efficiency, the RUR method is most recommended.

5.2 Comparison with Stetter’s numerical approach

We have shown the exact computation algorithm for solving a system of algebraic

equations by matrix eigenproblems, which is the symbolic version of Stetter’s method.

Although efficient and reliable numerical library programs are now available, the precision

problem becomes more serious for larger systems. In particular, when the system has

multiple zeros or spurious multiple zeros (simple zeros with the same coordinate in a

certain variable), their detection as a cluster must be rather heuristic [7].

On the other hand, our symbolic approach gives a good insight into multiple eigenvalues.

For the nonderogatory case, the solutions can be symbolically determined together with

their multiplicities. Moreover, it leads to a constructive description of multiple zeros [22],

which is in contrast to the formulation by Möller and Stetter [19][20][26].

5.3 Complexity

Here we roughly estimate the cost of the matrix eigenproblem method. Let n =

dimQ (Q [x1, . . . , xs] /I). After computing a Gröbner basis for I, we perform the following

steps.

(1) Computation of the multiplication tables

The cost is estimated at O(sn3) arithmetic operations over Q [10][23][24].

(2) Computation of the Frobenius normal forms

When the size of a matrix is n × n, Danilevskii’s method computes its characteristic

polynomial with O(n3) arithmetic operations [9]. Our implementation based on [13]

is considered to have the same complexity. Since we have to compute (s + 1) normal

forms at most, the total cost of this step is O(sn3).

(3) Construction of zeros using common eigenvectors

The computation of an eigenvector consists of multiplying an n × n matrix by an n-

vector, whose cost is O(n2). The construction of a zero consists of multiplying an s×n

matrix by an n-vector, whose cost is O(sn). Since the maximal number of zeros is n,

the total cost of this step is O(n3 + sn2).

Consequently, the total number of arithmetic operations over Q through these steps is

estimated at O(sn3). However, in the step (2), the elements of the matrices often grow

into huge rational numbers, thus we need an estimation based on machine operations
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considering coefficient growth. Nevertheless, such one for Frobenius normal forms is not

known, and further analysis is very difficult at present.

5.4 Improvement of efficiency

The Table 1 shows that the step of Frobenius normal forms computation is dominant

in our present implementation, even though it did not cause the memory shortage in these

examples.

The complexity of Frobenius normal form O(n3) is the same order as that of Gaus-

sian elimination, and the total cost O(sn3) is the same as that of the FGLM algorithm

[10]. Therefore, the matrix eigenproblem method could compare favorably with FGLM.

However, the existing programs for Frobenius normal forms [5][12] are not efficient enough,

because the intermediate swells are explosive. Our program seems rather faster than they,

but its improvement is needed. To avoid the coefficient growth, modular methods are

generally promising, whose application should be considered in the future study.

5.5 Concluding Remarks

Computing the Frobenius normal forms of multiplication tables we divide the problem

into four cases:

(1) nonderogatory and diagonalizable case,

(2) nonderogatory and nondiagonalizable case,

(3) derogatory and diagonalizable case,

(4) derogatory and nondiagonalizable case.

For the nonderogatory cases (1)(2), the solutions can be symbolically determined including

multiple zeros.

If the family of matrices is diagonalizable in the case (3), there always exist nonderoga-

tory matrices among linear combinations Aw :=
∑s

i=1 ciAi with randomly chosen integers

ci. Then, Aw becomes nonderogatory for almost every s-tuple (c1, . . . , cs). Actually, it

might be practical to start on
∑s

i=1 ciAi without computing each Frobenius normal form

of Ai.

Only for the case (4), we need minute treatment depending on each problem. Theoreti-

cally, on the assumption of exact computation, the locations and the multiplicities of zeros

can be algorithmically determined through the radical of the ideal. However, when it is

hard to comput the radical of a large-sized system directly [23][24], we have to develop an

algorithm for simultaneously decomposing the ideal in the context of matrix eigenproblems.

This is still an open problem.
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Table 1: CPU-Time(msec) for the computation of some examples

(#sol) Mult.Table Frobenius N.Form Solutions Total FGLM

Ex 3.1 (3) 550 170 (Ax) 220 940 110

Ex 3.2 (4) 720 390 (Ax) 220 1,330 50

Ex 3.3 (6) 1,440 601 (Ax)
610 (Ay)
550 (Az)

1,138 (Aw) 610 4,949 170

Ex 3.4 (12) 5,271 6,750 (Ax)
6,490 (Ay)
3,020 (Az)
7,190 (Aw) 1,320 30,041 1,870

Ex 3.4 (16) 7,750 16,320 (Ax)
18,670 (Ay)
17,140 (Aw) (unable) (59,880) 1,090√

I (4) 720 319 (Āx) 170 1,209 170

Ex 4 (32) 750,479 460,330 (Au0) 19,070 1,229,879 462,911

Ex 4 (64) 11,005,850 53,843,230 (Au0) 2,741,550 67,590,630 69,219,200

Ex 4 (70) 512,030 2,211,201 (Ax1)
1,673,650 (Aw) 111,560 4,508,441 181,910

Ex 4 (49) 301,379 815,280 (Ay)
1,295,120 (Ax) 49,820 2,461,599 597,200

Ex 4 (56) 353,939 828,800 (At)
827,880 (Az)
674,671 (Ay)

1,072,310 (Ay)
1,328,880 (Aw) (unable) (5,086,480) 358,731√

I (32) 53,000 93,310 (Āt)
139,440 (Āz)
92,110 (Āy)

138,960 (Āx)
158,239 (Āw) 21,970 697,029 76,679

Mult.Table : Gröbner basis + Construction of multiplication tables
Frobenius N.Form : Frobenius normal form computation of a matrix
Solutions : Construction of solutions by common eigenvectors
FGLM : Gröbner basis + GLEXCONVERT


	Introduction
	Basic Notions
	Residue Class Ring and Multiplication Table
	Frobenius Normal Form
	Matrix Eigenproblem

	Algorithms by Analysis of Multiplication Tables
	Nonderogatory and Diagonalizable Case
	Nonderogatory and Nondiagonalizable Case
	Derogatory and Diagonalizable Case
	Derogatory and Nondiagonalizable Case

	Implementation and Timing Data
	Discussion
	Comparison with other methods
	Comparison with Stetter's numerical approach
	Complexity
	Improvement of efficiency
	Concluding Remarks


