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Abstract

This is an enhanced full paper version of [Ishihara-Yokoyama, 2018] and contains detailed
proofs, additional examples and new algorithms. In [Ishihara-Yokoyama, 2018], we proposed
effective methods for localization of a polynomial ideal, which are called "Local Primary Al-
gorithm (LPA)". Here, we consider the special case "localization by a prime ideal" and we
introduce criteria for prime divisors and effective methods for computation of a primary com-
ponent. For an ideal I and a prime ideal P, LPA computes a P-primary component of I after
checking whether P is a prime divisor of I. It mainly uses Double Ideal Quotient (DIQ)
(I : (I : P)) and its variants which contain useful information about localization of I. To ex-
amine its practicality, we compare it to another localization algorithm without DIQ. Based on
computational experiments, we give further discussions about the practicality.

Keywords: Gröbner Basis, Primary Decomposition, Localization, Double Ideal Quotient

1 Introduction
The operation of "localization by a prime ideal" is widely known as a basic tool in commutative
algebra and algebraic geometry. Here, we focus on computing a primary component from only
its prime divisor and propose a new effective localization. As key notions, it uses double ideal
quotient (DIQ) (and its variants) and maximal independent set (MIS).

We recall briefly the essence of [5]. Localization of ideals (as the saturation or the contraction
of localized ideals) can be computed through its primary decomposition (see Remark 4), where
algorithms of primary decomposition have been much studied in papers [2, 3, 7, 12]. However, in
practice, the use of primary decomposition is not an efficient way since it tends to be very time-
consuming. Hence, we focused on special localization (localization by a prime ideal) and compute
a primary component directly, without its full primary decomposition. Then, we invented a direct
method named Local Primary Algorithm (LPA) which computes a primary component, without its
full primary decomposition. In more details, we explain some key points of LPA as follows.
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• LPA is based on several generating tools and criteria for primary components with different
procedures for two cases; isolated and embedded.

• LPA uses double ideal quotient and its variants as tools for generating and checking primary
components.

• Double ideal quotient (DIQ) is (I : (I : J)) for ideals I and J, which already appears in
[14] to check associated primes or compute equidimensional hulls, and in [2], to compute
equidimensional radicals.

• There are other important properties of DIQ and its variants toward effective localization. For
instance, for ideals I, J and a primary decomposition Q of I, a variant of DIQ (I : (I : J)∞)
coincides with

∩
Q∈Q,J⊂IK[X]√Q∩K[X] Q.

For practical implements we devised several efficient techniques for improving our LPA as follows
(see [6, 14] for efficient computation of ideal quotient and saturation).

• (P[m]
G -products) Use P[m]

G = ( f m
1 , . . . , f m

r ) for some generator G = { f1, . . . , fr} of P and the
equidimensional hull (see Definition 10) hull(I + P[m]

G ) to compute a P-primary component,
instead of using hull(I + Pm) (see Lemma 54).

• (MIS-hull) Use a maximal independent set of P for computing hull(Q) where Q is a P-hull-
primary ideal (see Definition 13). Since a maximal independent set U of P is also a maximal
independent set of I +Pm, we obtain hull(I +Pm) = (I +Pm)K[X]K[U]× ∩K[X] (see Lemma 58).

• (MIS-localization) Use a maximal independent set U of P at the first step of LPA to replace I
for IK[X]K[U]× ∩ K[X] (see Theorem 39).

As an enhanced full paper version of [5], this paper contains detailed proofs, additional exam-
ples and new algorithms. In particular, as additional development, we invent another localization
algorithm using a well-known splitting tool of ideal instead of DIQ to compare it and the original
LPAs (see Sect. 6). Furthermore, we make a new implementation on the computer algebra system
Risa/Asir [11] and re-examine the performance in a number of examples in Sect. 7. As a reference,
we show the timings of a full primary decomposition function noro_pd.syci_dec in Risa/Asir.
Thanks to efficient techniques above, our experiment shows clearly the practicality of our direct
localization method. From our experiments, we conclude that MIS-localization is the most effi-
cient tool among our LPAs. However, there are some cases for which it is not efficient. Our main
observation is the following;

• LPAs have strong effectiveness by its speciality.

• MIS-localization is much effective for many examples (see Table 1 and Table 2 in Sect. 7).
However, its computational behavior is unstable (see Figures 2, 3 in Sect. 7).

• Effectiveness of the algorithms depends on ideals. At present, it is not predicable and thus it
would be better to apply them in parallel.

This paper is organized as follows. Through Sect. 2 to Sect. 7, we add complete proofs and
a lot of examples as an enhanced full paper version of [5]. In Sect. 2, we provide a mathematical
basis for our criteria and algorithms. In Sect. 3, we introduce notions and properties of DIQ and
its variants. In Sect. 4, we describe criteria for prime divisors and primary components by using
DIQ and its variants. In Sect. 5, we explain LPA to compute the particular primary component
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without primary decomposition, after isolated and embedded prime divisor checks. In Sect. 6,
the additional section, we generalize propositions in [5] and devise a new algorithm using splitting
tool and maximal independent set instead of DIQ. In Sect. 7, we tested for many examples as
experiments and discuss the behavior of each algorithm. In Sect. 8, we give some concluding
remarks and the future works.

2 Mathematical Basis
Throughout this paper, we let K be a computable field (e.g. the rational field Q or a finite field),
X = {x1, . . . , xn} a set of variables and K[X] = K[x1, . . . , xn] the polynomial ring. We write
( f1, . . . , ft)K[X] for the ideal generated by elements f1, . . . , ft in K[X] and we simply use ( f1, . . . , ft)
if the ring is obvious. When we simply say I is an ideal, it means the I is an ideal of K[X].
Moreover, we denote the radical of I by

√
I.

2.1 Definition of Primary Decomposition and Localization
Here we give the definition of primary decomposition, which can be found in several books [1, 3,
6, 14].

Definition 1 (Primary Decomposition)
For an ideal I of K[X], a set Q of primary ideals is called a primary decomposition of I if I =∩

Q∈Q Q. A primary decomposition Q = {Q1, . . . ,Qr} is irredundant if the
√

Qi are all distinct and
Qi 2

∩
j,i Q j. We assume primary decomposition is irredundant. For a primary decomposition

of I, each primary ideal is called a primary component of I. The prime ideal associated with a
primary component of I is called a prime divisor of I. Among all prime divisors of I, minimal
prime ideals are called isolated prime divisors of I and others are called embedded prime divisors
of I. A primary component of I is called isolated if its prime divisor is isolated and embedded if its
prime divisor is embedded. We denote by Ass(I) and Assiso(I) the set of all prime divisors of I and
the set of all isolated prime divisors respectively.

It is well-known that an isolated primary component does not depend on primary decomposi-
tions, while an embedded primary component does. From the perspective of algorithm, it tends to
be more difficult to compute embedded primary components than isolated primary components.

We also give fundamental notions and properties related to a localization that can extract the
particular primary components.

Definition 2 (Localization)
Let I be an ideal of K[X] and S a multiplicatively closed set in K[X]. We call IK[X]S the localized
ideal by S and IK[X]S ∩ K[X] the contraction of the localized ideal respectively. For simplicity,
we call the latter the localization of I with respect to S (see Definition 2.2 in [12]). For a multi-
plicatively closed set K[X] \ P, where P is a prime ideal, we denote it simply by IK[X]P ∩ K[X].
We assume a multiplicatively closed set S always does not contain 0.

Example 3
In Q[X] = Q[x, y], let P = (x) be a prime ideal. For S = Q[X] \ P and I = (x2, xy), the localization
of I by S is IQ[X]S ∩Q[X] = (x). For P = (x, y) and J = (x)∩ (x+ 1)∩ (x+ 2, y2), the localization
of J by P is JQ[X]P ∩Q[X] = (x).

We remark a relationship between primary decomposition and localization.
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Remark 4 (Localization from Primary Decomposition)
Given a primary decompositionQ of an ideal I, the localization of I by S is expressed as

∩
Q∈Q,Q∩S=∅ Q.

Moreover, it is also equal to (I : (
∩

P∈Ass(I),P∩S,∅ P)∞). Here, we are thinking mainly about com-
putable multiplicatively closed set s.t. finitely generated one or the complement of a prime ideal.
In these cases, we can decide efficiently whether Q and S intersect or not, by using Gröbner basis.
Thus if we know all primary components or all associated primes, then we can compute localiza-
tions of I for any computable multiplicatively closed sets S . However, this method is not a direct
method since it computes unnecessary primary components or associated primes.

Next we introduce the notion of pseudo-primary ideal, which is an extension of the definition
of primary ideal.

Definition 5 ([12], Definition 2.3)
Let Q be an ideal. We say Q is pseudo-primary if

√
Q is a prime ideal. In this case, we also say

that Q is
√

Q-pseudo-primary.

Example 6
Since

√
(x2, xy) = (x) is a prime ideal, it follows that (x2, xy) is an (x)-pseudo-primary ideal. Every

P-primary ideal is P-pseudo-primary.

With the notion of pseudo-primary ideal, we can define some special localization the minimal
P-pseudo-primary component with respect to its isolated prime divisor P. It is equal to the inter-
section of all primary components whose radicals contain P but do not contain other isolated prime
divisors.

Definition 7
Let I be an ideal and P an isolated prime divisor of I. For a set of prime divisors

P = {P′ ∈ Ass(I) | P is the unique isolated prime divisor contained in P′}

and a multiplicatively closed set S = K[X] \ ∪P′∈P P′, we call Q = IK[X]S ∩ K[X] the minimal
P-pseudo-primary component of I. This definition is consistent with one in [12]. We note that
the minimal P-pseudo-primary component is determined uniquely and has the P-isolated primary
component of I as component. Also, every P-pseudo-primary component of I defined in [12]
contains the minimal one defined here.

Example 8
For I = (x) ∩ (x + 1) ∩ (x2, y) ⊂ Q[x, y], (x2, xy) is the minimal (x)-pseudo-primary component of
I and (x + 1) is the minimal (x + 1)-pseudo-primary component of I.

Remark 9
Every minimal P-pseudo-primary component of I is a P-pseudo-primary ideal. Let QP be the
minimal P-pseudo-primary component of I. Then I =

∩
P∈Assiso(I) QP ∩I′ for some I′ s.t. Assiso(I′)∩

Assiso(I) = ∅. This decomposition is called a pseudo-primary decomposition in [12], where it is
computed by separators from given Assiso(I). Meanwhile, we introduce another method to compute
P-pseudo-primary components by using double ideal quotient in Lemma 43.

We may regard the minimal P-pseudo-primary component as a "column localization" since it
has different dimensional primary components in general. Conversely, we may consider a "row
localization", that contains equidimensional primary components.
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Definition 10 ([2], Sect. 1)
Let I be an ideal and Q a primary decomposition of I. We call hull(I) =

∩
Q∈Q,dim(Q)=dim(I) Q

the equidimensional hull of I. Since every primary component Q satisfying dim(Q) = dim(I) is
isolated, hull(I) is determined independently from choice of primary decompositions.

Example 11
For I = (x) ∩ (x + 1) ∩ (x2, y) ∩ (x − 1, y) ⊂ Q[x, y], it follows that hull(I) = (x) ∩ (x + 1).

For a given I, hull(I) can be computed in several manners. For instance, it can be computed by
Ext functors [2] or a regular sequence contained in I [14] as follows.

Proposition 12 ([2], Theorem 1.1. [14], Proposition 3.41)
Let I be an ideal and u ⊂ I be a c-length regular sequence, where c is the codimension of I. Then
hull(I) = ((u) : ((u) : I)) = annK[X](ExtcK[X](K[X]/I,K[X])).

Next, we introduce the notion of hull-primary ideal, which is an extension of the definition of
pseudo-primary ideal. We use hull-primary ideal in Sec. 5.2.1 to devise practical techniques for
LPA.

Definition 13 ([5], Definition 13)
Let I be an ideal. We say that I is hull-primary if hull(I) is a primary ideal. For a prime ideal P, we
say a hull-primary ideal I is P-hull-primary if P = hull(

√
I).

Example 14
Let I = (x2) ∩ (x3, y) ∩ (x + 1, y + 1) ⊂ Q[x, y]. Since hull(I) = (x2) is (x)-primary, I is (x)-hull
primary.

As a pseudo-primary ideal has the unique isolated component, we obtain the following remark.

Remark 15
Every pseudo-primary ideal is hull-primary.

Using the following lemma and a variant of double ideal quotient, we can compute the isolated
P-primary component of I in Section 5.

Lemma 16 ([5], Lemma 15)
Let P be an isolated prime divisor of I and QP the minimal P-pseudo-primary component of I.
Then, QP is a P-hull-primary and hull(QP) is the isolated P-primary component of I.

Proof By Remarks 9 and 15, it follows that QP is P-hull-primary and hull(QP) is the isolated P-
primary component. By the definition of QP and Lemma 72, we obtain that hull(QP) is the isolated
P-primary component of I.

Example 17
Let I = (x) ∩ (x2, y) ∩ (x2, y + 1) ⊂ Q[x, y]. For P = (x), QP = (x2, xy) is the minimal P-pseudo
primary component of I and hull(QP) = (x) is the P-isolated primary component of I.
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2.2 Fundamental Properties of Ideal Quotient
We introduce fundamental properties of ideal quotient. The first two can be seen in several papers
and books ([1], Lemma 4.4. [6], Lemma 4.1.3. [14], a remark before Proposition 3.56). The last
two are direct consequences of the first two. We put a proof of Lemma 18 into Appendix.

Lemma 18 ([5], Lemma 19)
Let I and J be ideals, Q a primary ideal and Q a primary decomposition of I. Then,

(Q : J) =


Q (J 1

√
Q),

K[X] (J ⊂ Q),√
Q-primary ideal properly containing Q (J 1 Q, J ⊂

√
Q),

(1)

(Q : J∞) =

{
Q (J 1

√
Q),

K[X] (J ⊂
√

Q), (2)

(I : J) =
∩

Q∈Q,J1
√

Q

Q ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J), (3)

(I : J∞) = (I :
√

J∞) =
∩

Q∈Q,J1
√

Q

Q. (4)

3 Double Ideal Quotient
Double Ideal Quotient (DIQ) is an ideal of shape (I : (I : J)) where I and J are ideals. For an ideal
I and its primary decomposition Q, we divide Q into three parts:

Q1(J) = {Q ∈ Q | J 1
√

Q},
Q2(J) = {Q ∈ Q | J ⊂ Q},
Q3(J) = {Q ∈ Q | J 1 Q, J ⊂

√
Q}.

For example, letting I = (x2) ∩ (x3, y2) ∩ (y), J = (x2) and Q = {(x2), (x3, y2), (y)} a primary
decomposition of I, it follows that Q1(J) = {(y)}, Q2(J) = {(x2)}, and Q3(J) = {(x3, y2)}.

Then, our DIQ is expressed precisely by components of them. The following proposition can
be proved directly from Lemma 18.

Proposition 19 ([5], Proposition 20)
Let I and J be ideals. Then,

(I : (I : J)) =
∩

Q∈Q2(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J))

 (5)

∩
∩

Q∈Q3(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J))

 ,√
(I : (I : J)) =

∩
P∈Ass(I),J⊂P

P. (6)

Proof First, we show (5). We divide I into three parts:

I =
∩

Q∈Q1(J)

Q ∩
∩

Q∈Q2(J)

Q ∩
∩

Q∈Q3(J)

Q.
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Then,

(I : (I : J)) =

[ ∩
Q∈Q1(J)

Q ∩
∩

Q∈Q2(J)

Q ∩
∩

Q∈Q3(J)

Q] : (I : J)


= (

∩
Q∈Q1(J)

Q : (I : J)) ∩ (
∩

Q∈Q2(J)

Q : (I : J)) ∩ (
∩

Q∈Q3(J)

Q : (I : J)).

Since
(I : J) =

∩
Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J),

we obtain

• (
∩

Q∈Q1(J)

Q : (I : J)) = (
∩

Q∈Q1(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

= K[X]

• (
∩

Q∈Q2(J)

Q : (I : J)) = (
∩

Q∈Q2(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

=
∩

Q∈Q2(J)

(Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

• (
∩

Q∈Q3(J)

Q : (I : J)) = (
∩

Q∈Q3(J)

Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J)))

=
∩

Q∈Q3(J)

(Q : (
∩

Q′∈Q1(J)

Q′ ∩
∩

Q′∈Q3(J)

(Q′ : J))).

The second property (6) can be proved directly from the property (5).

This proposition can be used to prove the following criterion for prime divisors.

Corollary 20 ([14], Corollary 3.4)
Let I be an ideal and P a prime ideal. Then, P belongs to Ass(I) if and only if P ⊃ (I : (I : P)).

Proof We note P ⊃ (I : (I : P)) if and only if P ⊃
√

(I : (I : P)). By Proposition 19,
√

(I : (I : P)) =∩
P′∈Ass(I),P⊂P′ P′. If P ∈ Ass(I), then

√
(I : (I : P)) =

∩
P′∈Ass(I),P⊂P′ P′ ⊂ P. On the other hand, if

P ⊃
√

(I : (I : P)), then there is P′ ∈ Ass(I) s.t. P′ ⊂ P and P′ ⊃ P. Thus P = P′ ∈ Ass(I).

Example 21
Let I = (x2, xy) in Q[x, y]. Then, P = (x) is a prime divisor of I and (I : (I : P)) = (I : (x, y)) =
(x) ⊂ P.

Replacing ideal quotient with saturation in DIQ, we have the following variants.

Definition 22 (Variants of DIQ)
We call (I : (I : J)∞) the first saturated quotient, (I : (I : J∞)∞) the second saturated quotient, and
(I : (I : J∞)) the third saturated quotient respectively.

In the following proposition, we can see that variants of DIQ have useful information about
localization.
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Proposition 23 ([5], Proposition 22)
Let Q be a primary decomposition of I. Then,

(I : (I : J)∞) =
∩

Q∈Q,J⊂IK[X]√Q∩K[X]

Q, (7)

(I : (I : J∞)∞) =
∩

Q∈Q,J⊂
√

IK[X]√Q∩K[X]

Q, (8)

(I : (I : J∞)) =
∩

Q∈Q2(J)

(Q :
∩

Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

(Q :
∩

Q′∈Q1(J)

Q′). (9)

Proof Here, we give an outline of the proof. The formula (7) can be proved by combining the
equation

(I : (I : J)∞) = (I :
√

(I : J)∞) =
∩

Q∈Q,∩Q′∈Q1(J)
√

Q′∩∩Q′∈Q3(J)
√

Q′1
√

Q

Q

by Lemma 18 and the following equivalence

(1-a) J ⊂ IK[X]√Q ∩ K[X].

(1-b)
∩

Q′∈Q1(J)
√

Q′ ∩∩Q′∈Q3(J)
√

Q′ 1
√

Q.

for each Q ∈ Q. The second formula (8) can be proved by combining the equation (I : (I : J∞)∞) =
(I : (I : Jm)∞) =

∩
Q∈Q,Jm⊂IK[X]√Q∩K[X] Q for a sufficiently large m from the first formula (7), and

the following equivalence

(2-a) Jm ⊂ IK[X]√Q ∩ K[X] for a sufficiently large m.

(2-b) J ⊂
√

IK[X]√Q ∩ K[X].

for each Q ∈ Q. The third formula (9) can be proved directly from Lemma 18.
Now, we explain some details. We show (1-a) implies (1-b). If∩

Q′∈Q1(J)

√
Q′ ∩

∩
Q′∈Q3(J)

√
Q′ ⊂

√
Q,

then by Lemma 85,
√

Q′ ⊂
√

Q for some Q′ ∈ Q1(J) ∪ Q3(J). Since Q′ ⊂
√

Q′ ⊂
√

Q, we obtain
IK[X]√Q ∩ K[X] =

∩
Q′′∈Q,Q′′⊂

√
Q Q′′ ⊂ Q′. However, since Q′ ∈ Q1(J) ∪ Q3(J), we obtain J 1 Q′

and this contradicts J ⊂ IK[X]√Q ∩ K[X] ⊂ Q′.
Show (1-b) implies (1-a). Let Q′ ∈ Q contained

√
Q. Since

∩
Q′′∈Q1(J)

√
Q′′∩∩Q′′∈Q3(J)

√
Q′′ 1√

Q, we obtain Q′ < Q1(J) ∪ Q3(J) and Q′ ∈ Q2(J). Hence, J ⊂ Q′ and J ⊂ ∩Q′⊂
√

Q Q′ =
IK[X]√Q ∩ K[X].

Trivially, (2-a) implies (2-b) since J ⊂
√

Jm ⊂
√

IK[X]√Q ∩ K[X]. Show (2-b) implies (2-a).

For Q ∈ Q2(J) ∪ Q3(J), let mQ = min{m | Jm ⊂ Q} and m = max{mQ | Q ∈ Q2(J) ∪ Q3(J)}. Then,
(I : J∞) = (I : Jm). Since IK[X]√Q ∩ K[X] =

∩
Q′∈Q,Q′⊂

√
Q Q′, we obtain Q′ ∈ Q2(J) ∪ Q3(J) for

any Q′ ∈ Q contained in
√

Q. Thus, we obtain Jm ⊂ IK[X]√Q ∩ K[X].
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Finally, we show (9). Since (I : J∞) =
∩

Q′∈Q1(J) Q′, we obtain

(I : (I : J∞)) = (I :
∩

Q′∈Q1(J)

Q′)

= (
∩

Q∈Q1(J)

Q ∩
∩

Q∈Q2(J)

Q ∩
∩

Q∈Q3(J)

Q :
∩

Q′∈Q1(J)

Q′)

=
∩

Q∈Q2(J)

(Q :
∩

Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

(Q :
∩

Q′∈Q1(J)

Q′).

Example 24
For I = (x2) ∩ (x3, y2) ∩ (x4, y3, z2) ∩ (z) and J = (x2),

(I : (I : J)∞) =
∩

Q∈Q,J⊂IK[X]√Q∩K[X]

Q = (x2),

(I : (I : J∞)∞) =
∩

Q∈Q,J⊂
√

IK[X]√Q∩K[X]

Q = (x2) ∩ (x3, y2),

(I : (I : J∞)) =
∩

Q∈Q2(J)

(Q :
∩

Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

(Q :
∩

Q′∈Q1(J)

Q′) = (x2) ∩ (x3, y2) ∩ (x4, y3, z).

Using the first saturated quotient, we devise criteria for primary components in Section 4. The
second saturated quotient can be used to an isolated prime divisors check and generate an isolated
primary component in Section 5. The third saturated quotient gives another prime divisor criterion
(Criterion 5 in Section 4) by the following proposition.

Proposition 25 ([5], Proposition 23)
Let I and J be ideals. Then √

(I : (I : J∞)) =
∩

P∈Ass(I),J⊂P

P.

In particular,
√

(I : (I : J)) =
√

(I : (I : J∞)).

Proof Let Q be a primary decomposition of I. By Proposition 23 (9),

√
(I : (I : J∞)) =

∩
Q∈Q2(J)

√
(Q :

∩
Q′∈Q1(J)

Q′) ∩
∩

Q∈Q3(J)

√
(Q :

∩
Q′∈Q1(J)

Q′).

Since Q is minimal, we obtain Q 2
∩

Q′∈Q1(J) Q′ for any Q ∈ Q2(J) and Q 2
∩

Q′∈Q1(J) Q′ for any
Q ∈ Q3(J). Thus, by Lemma 18,√

(I : (I : J∞)) =
∩

Q∈Q2(J)
√

(Q :
∩

Q′∈Q1(J) Q′) ∩∩Q∈Q3(J)
√

(Q :
∩

Q′∈Q1(J) Q′)

=
∩

Q∈Q2(J)
√

Q ∩∩Q∈Q3(J)
√

Q =
∩

P∈Ass(I),J⊂P P.

From (6) in Proposition 19, we obtain
√

(I : (I : J)) =
√

(I : (I : J∞)).

Example 26
For I = (x2) ∩ (x3, y2) ∩ (y) and J = (x2),

√
(I : (I : J∞)) =

∩
P∈Ass(I),J⊂P P = (x).
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4 Criteria for Primary Component and Prime Divisor
In this section, we present several criteria for primary component which check whether a P-primary
ideal Q is a primary component of I or not without computing primary decomposition of I, based
on the first saturated quotient. We first propose a general criterion applicable to any primary ideals.
Later, we propose some specialized criteria aiming for isolated primary components and maximal
ones. Finally, we add criteria for prime divisors.

4.1 General Primary Component Criterion
We use the first saturated quotient to check whether a given primary ideal is a component or not.
We introduce a key notion saturated quotient invariant.

Definition 27 ([5], Definition 24)
Let I and J be ideals. We say that J is saturated quotient invariant of I if (I : (I : J)∞) = J.

Example 28
Let I = (x) ∩ (x2, y) and J = (x). Then J is saturated quotient invariant of I since (I : (I : J)∞) =
(I : (x, y)∞) = (x).

Any localization of ideal is saturated quotient invariant of the ideal. Conversely, any proper
saturated quotient invariant ideal of I is some localization of I.

Lemma 29 ([5], Lemma 25)
Let I be an ideal and J a proper ideal of K[X]. Then, the following conditions are equivalent.

(A) J = IK[X]S ∩ K[X] for some multiplicatively closed set S .
(B) J is saturated quotient invariant of I.

Proof Let Q be a primary decomposition. Show (A) implies (B). From Proposition 23 (7),

(I : (I : IK[X]S ∩ K[X])∞) =
∩

Q∈Q,IK[X]S∩K[X]⊂IK[X]√Q∩K[X]

Q. (10)

By Lemma 77, IK[X]S ∩ K[X] ⊂ IK[X]√Q ∩ K[X] if and only if Q ∩ S = ∅. Thus,∩
Q∈Q,IK[X]S∩K[X]⊂IK[X]√Q∩K[X]

Q =
∩

Q∈Q,Q∩S=∅
Q, (11)

Combining (10), (11) and IK[X]S ∩ K[X] =
∩

Q∈Q,Q∩S=∅ Q by Remark 4, we obtain (I : (I :
IK[X]S ∩ K[X])∞) = IK[X]S ∩ K[X].

Next, show (B) implies (A). From Proposition 23 (7),

(I : (I : J)∞) =
∩

J⊂IK[X]√Q∩K[X]

Q = J. (12)

Let P = {
√

Q | Q ∈ Q, J ⊂ IK[X]√Q ∩ K[X]}. We may assume P , ∅, otherwise P = ∅ and
J = K[X]. Then P is an isolated set (see Definition 74) since if P′ ∈ Ass(I) and P′ ⊂ P for some
P ∈ P, then J ⊂ IK[X]P∩K[X] ⊂ IK[X]P′ ∩K[X] and P′ ∈ P. Let S = K[X]\∪P∈P P. By Lemma
75, IK[X]S ∩ K[X] =

∩
Q∈Q,

√
Q∈P Q =

∩
J⊂IK[X]√Q∩K[X] Q. By (12), we obtain IK[X]S ∩ K[X] = J.
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Example 30
Let I = (x)∩(x2, y) and J = (x). Then J is saturated quotient invariant of I and J = IK[X](x)∩K[X].

Based on Lemma 29, we have the following criterion for primary component.

Theorem 31 (Criterion 1. [5], Theorem 26)
Let I be an ideal and P a prime divisor of I. For a P-primary ideal Q, if Q 2 (I : P∞), then the
following conditions are equivalent.

(A) Q is a P-primary component for some primary decomposition of I.
(B) (I : P∞) ∩ Q is saturated quotient invariant of I.

Proof Show (A) implies (B). Let Q be a primary decomposition. Let P = {P′ ∈ Ass(I) | P 1
P′ or P′ = P} and S = K[X] \∪P′∈P P′. Then S is a multiplicatively closed set and (I : P∞)∩ Q ⊂
IK[X]S ∩ K[X] since (I : P∞) ∩ Q =

∩
Q′∈Q,P1

√
Q′ Q′ ∩ Q. For each Q′ ∈ Q with Q′ ∩ S = ∅,

there is P′ ∈ P such that
√

Q′ ⊂ P′, i.e.
√

Q′ ∈ P. Thus, (I : P∞) ∩ Q ⊃ IK[X]S ∩ K[X] and
(I : P∞) ∩ Q = IK[X]S ∩ K[X]. By Lemma 29, IK[X]S ∩ K[X] is saturated quotient invariant of I.

Show (B) implies (A). By Lemma 29, there is a multiplicatively closed set S such that (I :
P∞) ∩ Q = IK[X]S ∩ K[X]. Let Q be a primary decomposition of I. We know IK[X]S ∩ K[X] =∩

Q′∈Q,Q′∩S=∅ Q′. By the assumption, Q 2 (I : P∞) and thus (I : P∞) ∩ Q has a P-primary
component. Then neither

∩
Q′∈Q,Q′∩S,∅ Q′ nor (I : P∞) has a P-primary component. Hence,

I = (I : P∞) ∩ Q ∩∩Q′∈Q,Q′∩S,∅ Q′ =
∩

Q′∈Q,P1
√

Q′ Q′ ∩ Q ∩∩Q′∈Q,Q′∩S,∅ Q′

is a primary decomposition and Q is its P-primary component.

Example 32
Let I = (x) ∩ (x2, y2) ∩ (x3, y3, z) ∩ (y) ∩ (x + 1, z) and P = (x, y) in Q[x, y, z]. Then, (I : P∞) =
(x) ∩ (y) ∩ (x + 1, z). We think the following two P-primary ideals.

• Q1 = (x2, y2). Since Q1 2 (I : P∞) and (I : (I : ((I : P∞) ∩ Q1))∞) = (x) ∩ (y) ∩ (x + 1, z) ∩
(x2, y2) = (I : P∞) ∩ Q1, we obtain (x2, y2) is a P-primary component of I.

• Q2 = (x2, x + y). Since (I : (I : ((I : P∞) ∩ Q2))∞) = (x) ∩ (y) ∩ (x + 1, z) , (I : P∞) ∩ Q2, we
obtain (x2, x + y) is not a P-primary component of I.

4.2 Other Criteria for Primary Component
Next, we propose criteria for primary components having special properties which can be applied
for particular prime divisors. These criteria may be computed more easily than the general one.

4.2.1 Criterion for Isolated Primary Component:

If Q is a primary ideal whose radical is an isolated divisor P of an ideal I, then we don’t need to
compute (I : P∞) in Theorem 31 since the P-primary component of I is the localization of I by P.

Theorem 33 (Criterion 2. [5], Theorem 27)
Let I be an ideal and P an isolated prime divisor of I. For a P-primary ideal Q, the following
conditions are equivalent.

(A) Q is the isolated P-primary component of I.
(B) (I : (I : Q)∞) = Q.
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Proof Show (A) implies (B). Let S = K[X] \ P. By Lemma 29, Q = IK[X]S ∩ K[X] is saturated
quotient invariant of I and thus (I : (I : Q)∞) = Q. Next, we show (B) implies (A). By Lemma 29,
there is a multiplicatively closed set S s.t. IK[X]S ∩K[X] = Q. Since Q is primary, IK[X]S ∩K[X]
is the isolated P-primary component.

Example 34
For I = (x2)∩(x3, y2)∩(y), a primary component Q = (x2) is isolated and (I : (I : Q)∞) = (x2) = Q.

4.2.2 Criterion for Maximal Primary Component:

Each isolated prime divisor is minimal in Ass(I). On the contrary, we consider "maximal prime
divisor" and propose the following criterion for it.

Definition 35
Let P be a prime divisor of I. We say P is maximal if there is no prime divisor P′ of I containing
P properly.

Example 36
For I = (x) ∩ (x2, y2) ∩ (z2) in Q[x, y, z], prime divisors P1 = (x, y) and P2 = (z) are maximal in
Ass(I) = {(x), (x, y), (z)}.

Theorem 37 (Criterion 3. [5], Theorem 29)
Let I be an ideal and P a maximal prime divisor of I. For P-primary ideal Q, the following
conditions are equivalent.

(A) Q is a P-primary component of I.
(B) (I : P∞) ∩ Q = I.

Proof Show (A) implies (B). Let Q be a primary decomposition of I with Q ∈ Q. Since P
is maximal in Ass(I), (I : P∞) =

∩
Q′∈Q,

√
Q′2P Q′ =

∩
Q′∈Q,Q′,Q Q′. Thus, (I : P∞) ∩ Q =∩

Q′∈Q,Q′,Q Q′ ∩ Q = I. Next, we show (B) implies (A). Let Q′ be a primary decomposition of
(I : P∞). Since Q′ does not have P-primary component, Q′ ∪ {Q} is a primary decomposition of I.

Example 38
Let I = (x)∩(x2, y2)∩(z2) and P = (x, y) in Q[x, y, z]. Then P is maximal in Ass(I) and Q = (x2, y2)
is a P-primary component of I since (I : P∞) ∩ Q = (x) ∩ (z2) ∩ (x2, y2) = I.

4.2.3 Criterion for Another General Primary Component:

The general case can be reduced to maximal case via localization by maximal independent set. A
subset U of X is called a maximal independent set of I if K[U] ∩ I = 0 and the cardinality of U
is equal to the dimension of I (see [6] for its computation). Letting S = K[U]× = K[U] \ {0}, we
obtain the following as a special case of Lemma 72.

Theorem 39 (Criterion 4. [5], Theorem 30)
Let I be an ideal and P a prime divisor of I. If U is a maximal independent set of P in X and Q is
a P-primary ideal , then the following conditions are equivalent.

(A) Q is a primary component of I.
(B) Q is a primary component of IK[X]K[U]× ∩ K[X].
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Example 40
For I = (x)∩ (x2, y)∩ (x3, y2, z), we obtain (x2, y) is a primary component of both I and IQ[X](x,y)∩
Q[X] = (x) ∩ (x2, y).

4.3 Additional Criterion for Prime Divisor
Here, we add a criterion for prime divisor based on the third saturated quotient.

Theorem 41 (Criterion 5. [5], Theorem 31)
Let I be an ideal and P a prime ideal. Then, the following conditions are equivalent.

(A) P ∈ Ass(I).
(B) P ⊃ (I : (I : P)).
(C) P ⊃ (I : (I : P∞)).

Proof By Corollary 20, (A) is equivalent to (B). By Proposition 25,√
(I : (I : P)) =

√
(I : (I : P∞)) =

∩
P′∈Ass(I),P⊂P′ P′. Thus, equivalence between (A) and (C) is

proved by the similar way of Corollary 20.

Example 42
For I = (x2) ∩ (x4, y) ∩ (x + 1) and a prime divisor P = (x), we obtain (I : (I : P)) = (x) ⊂ P and
(I : (I : P∞)) = (x2) ∩ (x4, y) ⊂ P.

Next, we devise another way to compute pseudo-primary components and criteria for isolated
prime divisors based on the second saturated quotient.

Lemma 43 ([5], Lemma 32)
Let I be an ideal and P an isolated prime divisor of I. If Q is the minimal P-pseudo-primary
component of I, then (I : (I : P∞)∞) = Q.

Proof Let Q be a primary decomposition of I. By Proposition 23 (8),

(I : (I : P∞)∞) =
∩

Q∈Q,P⊂
√

IK[X]√Q∩K[X] Q.

Thus it is enough to show that the following statements are equivalent for each Q ∈ Q.
(1-a) P ⊂

√
IK[X]√Q ∩ K[X].

(1-b) P is the unique isolated prime divisor which is contained in
√

Q.
Show (1-a) implies (1-b). As

√
IK[X]√Q ∩ K[X] ⊂

√
Q, we know P ⊂

√
Q. Then, suppose there

is another isolated prime divisor P′ contained in
√

Q. We obtain√
IK[X]√Q ∩ K[X] =

∩
Q′∈Q,Q′⊂

√
Q

√
Q′ ⊂ P′.

However, this implies P ⊂ P′ and contradicts that P′ is isolated. It is easy to prove that (1-b)
implies (1-a). Since P is the unique isolated prime divisor which is contained in

√
Q, we obtain

that √
IK[X]√Q ∩ K[X] =

∩
Q′∈Q,Q′⊂

√
Q

√
Q′ = P.
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Example 44
For I = (x)∩ (x2, y2)∩ (y+ 1) and P = (x), we obtain (I : (I : P∞)∞) = (x)∩ (x2, y2) is the minimal
P-pseudo-primary component of I.

Using Lemma 43, we obtain the following criterion for isolated prime divisor.

Theorem 45 (Criterion 6. [5], Theorem 33)
Let I be an ideal and P a prime ideal containing I. Then, the following conditions are equivalent.

(A) P is an isolated prime divisor of I.
(B) (I : (I : P∞)∞) , K[X].

Proof Show (A) implies (B). By Lemma 43, (I : (I : P∞)∞) = Q , K[X]. Show (B) implies (A).
By Proposition 23 (8),

(I : (I : P∞)∞) =
∩

Q∈Q,P⊂
√

IK[X]√Q∩K[X] Q , K[X]

for a primary decomposition Q of I. Then, there is an isolated prime divisor P′ containing P. Since√
I ⊂ P ⊂ P′ and P′ is isolated, this implies P = P′ is isolated.

Since each prime divisor of I contains I, Theorem 45 directly induces the following.

Corollary 46 (Criterion 7. [5], Corollary 34)
Let I be an ideal and P a prime divisor of I. Then,

(i) P is isolated if (I : (I : P∞)∞) , K[X],
(ii) P is embedded if (I : (I : P∞)∞) = K[X].

Example 47
Let I = (x)∩ (x2, y2)∩ (y+ 1). For a prime divisor P1 = (x), (I : (I : P∞)∞) = (x)∩ (x2, y2) , Q[X]
and P1 is isolated. For a prime divisor P2 = (x, y), (I : (I : P∞)∞) = Q[X] and P2 is embedded.

5 Local Primary Algorithm
In this section, we devise Local Primary Algorithm (LPA) which computes P-primary component
of I. Our method applies different procedures for two cases; isolated and embedded. Algorithm
1 shows the outline of LPA. Its termination comes from Proposition 48. We remark that, for
given prime divisors disjoint from a multiplicatively closed set S , we can compute all primary
components disjoint from S by LPA. Then their intersection gives the localization by S .

5.1 Generating Primary Component
First, we introduce several ways to generate primary components through equidimensional hull
computation.

Proposition 48 ([2], Section 4. [10], Remark 10)
Let I be an ideal and P a prime divisor of I. For any positive integer m, I + Pm is P-hull-primary,
and for a sufficiently large integer m, hull(I+Pm) is a P-primary component appearing in a primary
decomposition of I.

Example 49
For I = (x) ∩ (x2, y) ∩ (x3, y2, z) and P = (x, y), we obtain I + P3 = (x3, x2y, xy2, y3, x2z, xyz) and
hull(I + P3) = (x2, xy, y3) is a P-primary component of I.
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We can use Criteria for Primary Component to check m is large enough or not. If P is an isolated
prime divisor, then the component is computed directly by using the second saturated quotient. By
Lemma 16 and Lemma 43, we obtain the following theorem. To compute equidimensional hull,
we can use regular sequence (see Proposition 12) or maximal independent set (see Lemma 58).

Theorem 50 ([5], Theorem 36)
Let I be an ideal and P an isolated prime divisor of I. Then

hull((I : (I : P∞)∞))

is the isolated P-primary component of I.

Example 51
For I = (x2) ∩ (x3, y2) ∩ (y + 1) and P = (x), the isolated P-primary component is hull((I : (I :
P∞)∞)) = hull((x2) ∩ (x3, y2)) = (x2).

Algorithm 1 General Frame of Local Primary Algorithm
Input: I: an ideal, P: a prime ideal
Output: • a P-primary component of I if P is a prime divisor of I

• "P is not a prime divisor" otherwise
1: if P is a prime divisor of I (Criterion 5) then
2: if P is isolated (Criteria 6,7) then
3: Q← the minimal P-pseudo-primary component of I (Lemma 43)
4: Q← hull(Q) (Theorem 50)
5: return Q is the isolated P primary component
6: else
7: m← 1, Q← K[X]
8: while Q is not primary component of I (Criteria 1,3,4) do
9: Q← a P-hull-primary ideal related to m (Proposition 48, Lemma 54)

10: Q← hull(Q)
11: m← m + 1
12: end while
13: return Q is an embedded P-primary component
14: end if
15: else
16: return "P is not a prime divisor"
17: end if

5.2 Techniques for Improving LPA
We introduce practical techniques for implementing LPA.

5.2.1 Another Way of Generating Primary Component

Let G = { f1, . . . , fr} be a generator of a prime ideal P. Usually we take { f e1
1 f e2

2 · · · f er
r | e1+· · ·+er =

m} as a generator of Pm for a positive integer m. However, this generator has (r+m−1)!
(r−1)!m! elements and

it becomes difficult to compute hull(I + Pm) when m becomes large. To avoid the explosion of the
number of the generator, we can use P[m]

G = ( f m
1 , . . . , f m

r ) instead.
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First, we introduce a proposition to compute primary decomposition by using equdimensional
hull.

Lemma 52 ([5], Lemma 37)
Let Q be a primary decomposition of I and Q ∈ Q. If

√
Q-hull-primary ideal Q′ satisfies I ⊂ Q′ ⊂

Q, then (Q \ {Q}) ∪ {hull(Q′)} is another primary decomposition of I.

Proof By Lemma 81, we obtain I ⊂ Q′ ⊂ hull(Q′) ⊂ Q. Since I∩hull(Q′) = I and Q∩hull(Q′) =
hull(Q′), we obtain

I = I ∩ hull(Q′) =

 ∩
Q′′∈Q,Q′′,Q

Q′′ ∩ Q

 ∩ hull(Q′) =
∩

Q′′∈Q,Q′′,Q

Q′′ ∩ hull(Q′).

Thus, (Q \ {Q}) ∪ {hull(Q′)} is an irredundant primary decomposition of I.

Example 53
Let I = (x) ∩ (x2, y) ∩ (z), Q′ = (x2, xy, y2) ∩ (x2, xy, y3, z + 1) and P = (x, y). Then, Q′ is P-hull-
primary. For a primary component Q = (x2, y), we obtain I ⊂ Q′ ⊂ Q and hull(Q′) = (x2, xy, y2) is
a P-primary component of I.

Next, the following lemma gives another efficient way to compute a primary component from
its prime divisor.

Lemma 54 ([5], Lemma 38)
For any positive integer m, I + P[m]

G is P-hull-primary, and for a sufficiently large m, hull(I + P[m]
G )

is a P-primary component appearing in a primary decomposition of I if P is a prime divisor of I.

Proof As
√

P[m]
G = P and

√
I + P =

√
I + P[m]

G = P, I + P[m]
G is P-hull-primary. By Proposition

48, hull(I + Pm) is a P-primary component of I for a sufficiently large m. Since I ⊂ I + P[m]
G ⊂

I + Pm ⊂ hull(I + Pm), hull(I + P[m]
G ) is a P-primary component by Lemma 52.

Example 55
For I = (x)∩ (x2, y)∩ (x3, y2, z) and P = (G) = (x, y), we obtain I + P[3]

G = (x3, xy2, y3, x2z, xyz) and
hull(I + P[3]

G ) = (x2, xy, y3) is a P-primary component of I.

5.2.2 Regular Sequence Computation for Pseudo-Primary Ideal

We can compute a regular sequence in a P-pseudo-primary ideal I from one of P by the following
lemma. Since a generator of P may be more easily than one of I, it tends to be less time-consuming.

Lemma 56
Let I be a P-pseudo-primary ideal and u = { f1, . . . , fc} a regular sequence in P. Then, for efficiently
large integers m1, . . . ,mc, { f m1

1 , . . . , f mc
c } is a regular sequence in I.

Proof By Theorem 26 in [9], { f m1
1 , . . . , f mc

c } is a regular sequence for any positive integers m1, . . . ,mc.
Since I is P-pseudo-primary, it follows that

√
I = P. Thus, for efficiently large integer m1, . . . ,mc,

{ f m1
1 , . . . , f mc

c } ⊂ I and it is a regular sequence in I.

Since
√

(I : (I : P∞)∞) = P if P is isolated, we obtain the following Corollary. From codim(P) =
codim((I : (I : P∞)∞)) and Lemma 12, we can compute the equidimensional hull hull((I : (I :
P∞)∞)) by using a regular sequence in P.
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Corollary 57
Let I be an ideal and P its isolated prime divisor. Let u = { f1, . . . , fc} be a regular sequence in P.
Then, for efficiently large integer m, { f m

1 , . . . , f m
c } is a regular sequence in (I : (I : P∞)∞).

5.2.3 Equidimensional Hull Computation with MIS

Next, we devise another computation of hull(I + Pm) based on maximal independent set (MIS)
which tends to be much efficient than computations based on Proposition 12. Similarly, by this
technique we can replace I with IK[X]K[U]× ∩ K[X] at the first step of LPA.

Lemma 58 ([5], Lemma 39)
Let I be a P-hull-primary ideal. For a maximal independent set U of P, hull(I) = IK[X]K[U]×∩K[X].

Proof Let Q be a primary decomposition of I. Then, hull(I) is the unique primary component
disjoint from K[U]×. Thus, IK[X]K[U]× ∩ K[X] =

∩
Q∈Q,Q∩K[U]×=∅ Q = hull(I).

Example 59
For I = (x) ∩ (x2, y) and P = (x) in Q[X] = Q[x, y], we obtain U = {y} is a maximal independent
set of P. Then, hull(I) = (x) = IQ[X]Q[U]× ∩Q[X].

6 Further Discussion of Local Primary Algorithm

In this section, we devise another algorithm "LPA-(P[m]
G +MIS) without DIQ" to compute the partic-

ular primary component, without double ideal quotient and its variants. The algorithm uses equidi-
mensional hull to generate primary component in the similar way as LPA. As different points, it
uses maximal independent set for another criterion of prime divisor and generalized splitting tool
for an additional criterion of primary component.

First, we introduce a new criterion for prime divisors using maximal independent set instead of
double ideal quotient.

Proposition 60 (Criterion 8)
Let I be an ideal and P a prime ideal in K[X]. Then the following statements are equivalent.

1. P ∈ Ass(I).

2. (I′ : P∞) , I′, where I′ = IK[X]K[U]× ∩ K[X] for a maximal independent set U of P.

Proof Let Q be a primary decomposition of I. To prove that (1) implies (2), we remark that P ∈
Ass(I) leads P ∈ Ass(I′) from Lemma 72 and P ∩ K[U]× = ∅. Thus, we obtain that (I′ : P∞) , I′

since P < Ass((I′ : P∞)). Next, we show (2) implies (1). Since (I′ : P∞) , I′, there is a prime
divisor P′ ∈ Ass(I′) containing P. Then P′ ∩ K[U]× = ∅ and dim(P′) ≤ dim(P) = #U. From
Lemma 72, P′ ∈ Ass(I) and thus dim(P′) ≥ #U. Hence, dim(P) = dim(P′) and P = P′ ∈ Ass(I).

Example 61
Let I = (x2)∩ (x3, y) and P = (x) in Q[X] = Q[x, y]. Then, U = {y} is the maximal independent set
of P and I′ = IQ[X]Q[U]× ∩Q[X] = (x2). Since (I′ : P∞) = Q[X] , I′, we get P ∈ Ass(I).

Next, we introduce a P-pseudo-descending chain to devise a generalized splitting tool and a
new criterion for isolated prime divisors. It is a generalization of Pm and P[m]

G in [5].
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Definition 62 (P-pseudo-descending chain)
Let P be a prime ideal and J1 ⊃ J2 ⊃ J3 ⊃ · · · a descending chain of P-pseudo-primary ideals.
We say that J1 ⊃ J2 ⊃ J3 ⊃ · · · is a P-pseudo-descending chain if PJm ⊃ Jm+1 for every positive
integer m.

Example 63
As an easy example, P ⊃ P2 ⊃ P3 ⊃ · · · is a P-pseudo-descending chain. For a generator G of
P, P[1]

G ⊃ P[2]
G ⊃ P[3]

G ⊃ · · · is a P-pseudo-descending chain since P[m]
G is P-pseudo-primary and

PP[m]
G ⊃ P[m+1]

G for every m.

Remark 64
We remark that a P-pseudo-descending chain is not always P-filtration i.e. it does not always
satisfy the other inclusion PJm ⊂ Jm+1.

We can use a P-pseudo-descending chain to generate P-primary component as Lemma 65, a
generalization of Proposition 48 and Lemma 54.

Lemma 65
Let I be an ideal, P a prime divisor of I and J1 ⊃ J2 ⊃ J3 ⊃ · · · be a P-pseudo-descending chain.
Then, for an efficiently large integer m, hull(I + Jm) is a P-primary component of I. Moreover, if
hull(I + Jm) is a P-primary component of I for some m, then hull(I + Jm+1) is also a P-primary
component of I.

Proof Let Q be a P-primary component of I. Since K[X] is Noetherian, there is an efficiently
large integer m s.t. Pm ⊂ Q. As Pm ⊃ Pm−1J1 ⊃ Pm−2J2 ⊃ · · · ⊃ PJm−1 ⊃ Jm, it follows that

I ⊂ I+ Jm ⊂ Q. Here,
√

I + Jm =

√√
I + P = P and thus I+ Jm is P-pseudo-primary, in particular,

P-hull-primary. From Lemma 52, we obtain hull(I + Jm) is a P-primary component of I. Next,
we show the second statement. If hull(I + Jm) is a P-primary component of I for some m, then it
follows that I ⊂ I + Jm+1 ⊂ I + Jm ⊂ hull(I + Jm). Thus, hull(I + Jm+1) is a P-primary component
of I from Lemma 52.

Example 66
Let I = (x2, xy), P = (x, y) and Jm = (xm, ym). We obtain hull(I + Jm) = (x2, xy, ym) is a P-primary
component if m ≥ 2.

Here, we devise a generalized splitting tool and find an integer m s.t. hull(I+ Jm) is a P-primary
component as follows.

Proposition 67 (Generalized Splitting Tool)
Let I be an ideal, P a prime divisor of I and J1 ⊃ J2 ⊃ J3 ⊃ · · · be a P-pseudo-descending chain.
Then, for an efficiently large integer m,

I = (I : P∞) ∩ (I + Jm).

In particular, for such m, hull(I + Jm) is a P-primary component of I.

Proof By Lemma 83, I = (I : P∞) ∩ (I + Pm) for an efficiently large integer m. As Jm ⊂ Pm, it
follows that

I = (I : P∞) ∩ (I + Pm) ⊃ (I : P∞) ∩ (I + Jm) ⊃ I

and thus I = (I : P∞) ∩ (I + Jm). Since (I : P∞) does not have P-primary component and I + Jm is
P-hull-primary, we obtain hull(I + Jm) is a P-primary component of I.
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Example 68
Let I = (x2, xy), P = (x, y) and Jm = (xm, ym). We obtain I = (I : P∞) ∩ (I + J2) = (x) ∩ (x2, xy, y2)
and (x2, xy, y2) is a P-primary component of I.

A P-pseudo-descending chain gives us the following criteria for isolated prime divisors.

Theorem 69 (Criterion 9)
Let I be an ideal, P a prime divisor of I and J1 ⊃ J2 ⊃ J3 ⊃ · · · a P-pseudo-descending chain. We
suppose hull(I + Jm) is a P-primary component of I for some m. Then, the following statements
are equivalent.

1. P is an isolated prime divisor of I.

2. hull(I + Jm) = hull(I + Jm+1).

Proof First, we show (1) implies (2). By Lemma 65, hull(I+ Jm+1) is also a P-primary component
of I. Since P is isolated, the P-primary component is unique and hull(I + Jm) = hull(I + Jm+1).
Second, we show (2) implies (1). Let R = K[X]P/IK[X]P. Since I + Jm is P-hull-primary, it
follows that hull(I + Jm) = (I + Jm)K[X]P ∩ K[X] and thus hull(I + Jm)R = JmR. As hull(I + Jm) =
hull(I + Jm+1), we get JmR = Jm+1R. Thus, Jm ⊃ PJm ⊃ Jm+1 and it follows that JmR ⊃ PJmR ⊃
Jm+1R = JmR, hence, JmR = PJmR. Since JmR is finitely generated K[X]P-module, we obtain
JmR = 0 by Nakayama’s Lemma. Thus, JmK[X]P = IK[X]P and P ∈ Ass(

√
I), otherwise, IK[X]P

has two or more prime divisors. Therefore, P is isolated.

Example 70
Let I = (x2) ∩ (x3, y). For P1 = (x), it follows that hull(I + P2

1) = hull(I + P3
1) = (x2) is a P1-

primary component. Thus, P1 is the isolated prime divisor of I. On the other hand, for P2 = (x, y)
and Jm = (xm, ym), hull(I + J3) = (x3, x2y, y3) is a P2-primary component and hull(I + J3) )
hull(I + J4) = (x3, x2y, y4); thus P2 is embedded.

Remark 71
An integer m s.t. hull(I+Jm) is a P-primary component of I may be smaller than m′ s.t. hull(I+Pm′ )
is a P-primary component of I. Thus, we may compute a primary component more easily by
hull(I + P[m]

G ).

Algorithm 2 is another version of Local Primary Algorithm, without using DIQ. As Jm, we use
P[m]

G (currently we think this Jm is the best), for efficient computations and maximal independent
set in steps of the following algorithm.

7 Experiments and Observations
We made an implementation on the computer algebra system Risa/Asir [11] and apply it to sev-
eral examples as experiments. We revisited old examples in [5], I1(n) and Ak,m,n. The former
I1(n) = (x2) ∩ (x4, y) ∩ (x3, y3, (z + 1)n + 1) is an ideal whose embedded primary components are
hard to compute. If n is considerable large, it is difficult to compute a full primary decomposition
of I1(n) though the isolated divisor P1 = (x) can be detected pretty easily. The latter Ak,m,n defined
in [13] is more valuable for mathematics and its primary decomposition has important meanings
in Computer Algebra for Statistics. We newly considered T1, . . . ,T10 that appear in [7] for bench-
marks of primary decomposition. We describe the more details of ideals in A.2. Timings are
measured on a PC with Intel Core i7-8700B CPU with 32GB memory.
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Algorithm 2 Local Primary Algorithm Without Double Ideal Quotient
Input: I: an ideal，P: a prime ideal in K[X]
Output: • a P-primary component if P is a prime divisor

• "P is not a prime divisor" otherwise
1: U ← a Maximal Independent Set of P, I′ ← IK[X]K[U]× ∩ K[X]
2: G ← { f1, . . . , fs} a generator of P, m← 1
3: if (I′ : P∞) = I′ then
4: return "P is not a prime divisor " (Criterion 8)
5: end if
6: while (I′ : P∞) ∩ (I′ + P[m]

G ) , I′ do
7: m← m + 1 (Proposition 67)
8: end while
9: Qm ← hull(I′ + P[m]

G ) = (I′ + P[m]
G )K[X]K[U]× ∩ K[X] (Lemma 58)

10: Qm+1 ← hull(I′ + P[m+1]
G ) = (I′ + P[m+1]

G )K[X]K[U]× ∩ K[X]
11: if Qm = Qm+1 then
12: return "Qm is the isolated P-primary component of I " (Criterion 9)
13: else
14: return "Qm is an embedded P-primary component of I " (Criterion 9)
15: end if

Now, we explain the details of Local Primary Algorithms (LPAs). From Proposition 12, the
primitive LPA use double ideal quotient and regular sequence to compute equidimensional hull. To
compute a regular sequence in I +P[m]

G and that in (I : (I : P∞)∞) efficiently, we use Lemma 56 and
Corollary 57 respectively. As improved versions, LPA-P[m]

G is an implementation based on Lemma
54 and LPA-MIS is one from Lemma 58 and Criteria 3, 4. Both methods are implemented in LPA-
(P[m]

G +MIS). The new algorithm LPA-(P[m]
G +MIS) without DIQ is based on Algorithm 2. Here, as

a reference, we show the timings of a full primary decomposition function noro_pd.syci_dec in
Table 6.

In all Figures, the horizontal axis shows isolated or embedded prime divisors and the vertical
axis represents the timing (in seconds) of each prime divisor. In particular, the embedded prime
divisors are in order of decreasing dimension.

7.1 Computation of Isolated Components
First, we apply LPAs to isolated primary components. In Table 1 and Table 2, we can see LPAs have
clearly effectiveness by their specialities. We call an algorithm stable for an ideal if the statistical
standard deviation of timing data for their prime divisors is small. Figure 1 and Table 3 show that
LPA is stable for T1 since the the statistical standard deviation is 4.17, which is much smaller than
those of LPA-MIS and LPA-(P[m]

G +MIS). On the other hand, both LPA-MIS and LPA-(P[m]
G +MIS)

without DIQ take much time for some cases and are unstable since the statistical standard deviations
are over 100 times of that of LPA. Also, we can see its instability in Figures 2 and 3, where
we limit the maximum to 35 seconds. The main reason is that MIS-localization becomes very
time-consuming for specific ideals and prime ideals. However, when MIS-localization is efficient,
timings of LPA-MIS and LPA-(P[m]

G +MIS) without DIQ are much faster than those of LPA. There
are almost no difference between timings of LPA-MIS and LPA-(P[m]

G +MIS) without DIQ since
MIS-localization is very effective and it can reduce the timings of other parts. As a summary of
analysis for isolated examples,
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• LPAs have clearly effectiveness by their specialities.

• LPA is stable, on the other hand, both LPA-MIS and LPA-(P[m]
G +MIS) without DIQ are unstable

due to strange behavior of MIS-localization. However, it is much useful than LPA when MIS-
localization works well.

Ideals\Algorithms LPA LPA-MIS LPA-(P[m]
G +MIS)

w/o DIQ
I1(100), P1 0.01 0.007 0.006
I1(200), P1 0.02 0.01 0.01
I1(300), P1 0.03 0.01 0.01
I1(400), P1 0.04 0.02 0.01
I1(500), P1 0.05 0.02 0.02
A3,4,5, P2 14.1 > 7200 > 7200

T1, P3 12.3 > 7200 > 7200
T1, P4 28.2 0.20 0.19
T2, P5 50.0 > 7200 > 7200
T3, P6 0.96 0.04 0.04
T4, P7 4.11 7.74 7.84
T5, P8 5.22 0.07 0.07
T6, P9 0.13 0.02 0.01
T7, P10 25.5 0.21 0.21
T8, P11 0.06 0.02 0.02
T9, P12 2.42 1.78 1.73
T10, P13 151 2.81 2.81

Table 1: Local Primary Algorithm (Isolated)

Ideals LPA LPA-MIS LPA-(P[m]
G +MIS)

(# of isolated components) w/o DIQ
T1 (49) 100 73.4 75.5
T2 (15) 0 0 0
T3 (47) 97.8 82.9 82.9
T4 (40) 100 95.0 95.0
T5 (14) 100 71.4 71.4
T6 (48) 100 100 100
T7 (55) 100 89.0 90.9
T8 (37) 91.8 67.5 67.5
T9 (15) 100 26.6 40.0
T10 (76) 100 43.4 46.0

Table 2: Comparison among LPAs (the ratios of isolated primary components which each LPA
could compute more efficiently than the specified full primary decompositions.)

Fig. 1: LPA (49 isolated prime divisors of T1) Fig. 2: LPA-MIS (49 isolated prime divisors of T1)
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Fig. 3: LPA-(P[m]
G +MIS) without DIQ (49 isolated prime divisors of T1)

Ideals \ Algorithms LPA LPA-MIS LPA-(P[m]
G +MIS) w/o DIQ

(LPA-MIS/LPA) (LPA/(LPA-(P[m]
G +MIS) w/o DIQ ))

T1 4.17 457 (109) 478 (114)
T3 173 428 (2.47) 428 (2.47)
T4 0.68 14.9(21.9) 14.8 (21.7)
T5 2.65 541(204) 541 (204)
T7 4.26 282(66.1) 281 (65.9)
T8 327 438(1.33) 439 (1.34)
T9 0.11 582 (5290) 584 (5309)
T10 16.8 557 (33.1) 562 (33.4)

Table 3: The statistical standard deviations of timing data for isolated prime divisors, where we
limit the maximum to 1200 seconds

7.2 Computation of Embedded Components
In Table 4, the primitive LPA is not practical for some examples since the cost of computing
hull(I + Pm) is much high. Comparing LPA and LPA-P[m]

G (also LPA-MIS and LPA-(P[m]
G +MIS)),

we can see the technique P[m]
G -products is effective for most cases. As algorithms using MIS-

localization, LPA-(P[m]
G +MIS) and LPA-(P[m]

G +MIS) without DIQ have good effectivenesses by
their specialities for many cases, for examples, (I1(n), P14), (A2,4,4, P15), (A2,3,7, P16), (T1, P17),
(T4, P21), (T7, P24), (T8, P25), (T10, P27) and so on. From Table 4, we can see MIS-technique is
efficient for many cases. However, there are some examples s.t. MIS-localization is not efficient,
for instance, (T1, P18) and (T3, P20). As a consideration of the ration of such non-efficient case,
in Table 5, we can see both LPA-(P[m]

G +MIS) and LPA-(P[m]
G +MIS) are effective for 96.6% of

embedded prime divisors of T1 i.e. MIS-localization is efficient for most embedded prime divisors
of T1. In Figures 4,5 and 7, we can see LPAs using MIS are unstable due to MIS-localization,
comparing LPA-P[m]

G . Same as isolated components, there are almost no difference between timings
of LPA-(P[m]

G +MIS) and LPA-(P[m]
G +MIS) without DIQ since MIS-localization is much powerful

and we can ignore the timings for computation of DIQ. In summary,

• The technique P[m]
G -products is effective for most cases.

• Both LPA-(P[m]
G +MIS) and LPA-(P[m]

G +MIS) without DIQ are much efficient to compute spe-
cific embedded components for most prime divisors.

• MIS-localization is very powerful but unstable, compared to LPA-P[m]
G .
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Ideals \ Algorithms LPA LPA-P[m]
G LPA-MIS LPA-(P[m]

G +MIS)
LPA-(P[m]

G +MIS)
w/o DIQ

I1(100), P14 0.09 0.07 0.01 0.01 0.007
I1(200), P14 0.17 0.14 0.02 0.02 0.01
I1(300), P14 0.29 0.25 0.02 0.02 0.01
I1(400), P14 0.41 0.31 0.03 0.03 0.02
I1(500), P14 0.43 0.38 0.03 0.02 0.03
A2,4,4, P15 1707 5.50 0.56 0.25 0.32
A2,3,7, P16 143 25.1 0.60 0.37 0.41

T1, P17 73.8 71.8 0.27 0.22 0.20
T1, P18 61.6 58.2 >7200 >7200 >7200
T2, P19 214 188 >7200 >7200 >7200
T3, P20 0.75 0.76 29.6 29.5 29.5
T4, P21 10.9 9.53 0.12 0.10 0.08
T5, P22 >7200 63.0 >7200 2.82 1.13
T6, P23 >7200 5.83 >7200 0.13 0.05
T7, P24 86.3 41.5 5.89 0.21 0.19
T8, P25 3.32 0.27 0.08 0.04 0.02
T9, P26 9.54 8.18 >7200 >7200 >7200
T10, P27 4338 256 668 0.89 0.80

Table 4: Local Primary Algorithm (Embedded)

Ideals
LPA-P[m]

G LPA-(P[m]
G +MIS)

LPA-(P[m]
G +MIS)

(# of embedded components) w/o DIQ
T1 (120) 41.6 96.6 96.6

Table 5: Comparison of LPAs (the ratios of embedded primary components which each LPA could
compute more efficiently than the specified full primary decomposition of T1)

Fig. 4: LPA-(P[m]
G +MIS)

(120 embedded prime divisors of T1)
upper limit: 10 seconds

Fig. 5: LPA-(P[m]
G +MIS) w/o DIQ

(120 embedded prime divisors of T1)
upper limit: 10 seconds

Fig. 6: LPA-P[m]
G

(120 embedded prime divisors of T1)
upper limit: 200 seconds

Fig. 7: LPA-MIS
(120 embedded prime divisors of T1)
upper limit: 200 seconds
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Ideals \ Algorithms full primary decomposition
(noro_pd.syci_dec)

I1(100) 0.28
I1(200) 11.3
I1(300) 66.7
I1(400) 167
I1(500) 73.3
A2,4,4 3.42
A2,3,7 31.2
A3,4,5 > 7200

T1 62.7
T2 30.0
T3 63.9
T4 35.0
T5 49.8
T6 5.58
T7 261
T8 1.82
T9 5.24
T10 324

Table 6: The timings of full primary decompositions (Reference)

7.3 Summary on Computational behavior
In isolated cases, LPAs have clearly effectiveness by their specialities. In embedded cases, the
technique Pm

G-products is a useful way. For both cases, MIS-localization is very efficient for many
ideals and prime divisors, however, it is unstable. To make our LPAs more effective, we need
improvements of DIQ or MIS-localization. Since methods without MIS (LPA and LPA-P[m]

G ) are
stable, improvements of DIQ gives us stable LPA-algorithms. On the other hand, if we succeed
improvements of MIS-localization for every cases, we also have efficient algorithms.

8 Conclusion and Future Work
In commutative algebra and algebraic geometry, the operation of "localization by a prime ideal"
is widely known as a basic tool. In the paper, we focus on computing a primary component from
only its prime divisor and propose a new effective localization Local Primary Algorithm (LPA).
It mainly uses double ideal quotient (DIQ) (and its variants), and localization by maximal inde-
pendent set (MIS). As an enhanced full paper version of [5], this paper contains detailed proofs,
additional examples and new algorithms. Moreover, we took benchmarks for many examples to
examine the effectiveness of LPA coming from its speciality. In the additional discussion, we in-
vent another algorithm using a well-known splitting tool and maximal independent set instead of
DIQ to compare it and the original LPAs. From experiments, we can see MIS-localization is very
effective for many cases, however, it is unstable and there are some examples which are very time-
consuming. We conclude that effectiveness of the LPAs depends on ideals and it would be better,
at the moment, to apply them in parallel.

In future work, to make our LPAs very practical we shall continue to improve it through obtain-
ing timing data for a lot of larger examples. In particular, we need to invent effective algorithms to
compute double ideal quotient and MIS-localization. To solve it, we can apply so-called modular
techniques using computations over finite fields for those over the rational field by Chinese Remain-
der Theorem and rational reconstruction. Since intermediate coefficient growth does not happen
over a finite field, it is expected to reduce time of computation over the rational field dramatically.
The first author just reported his first attempt of such modular techniques in the recent paper ([4]).
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Another work shall be to apply our primary component criteria to probabilistic or inexact methods
for primary decomposition, such as numerical ones. Probabilistic or inexact ways may have low
computational costs but low accuracy for outputs. Hence, our criteria using double ideal quotient
can guarantee their outputs. For example, we are thinking to combine our LPAs and Numerical
Primary Decomposition in [8] to compute possible prime divisors and primary components.
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A Fundamental Lemmas and their Proofs (Appendix)

A.1 Lemmas and Definitions
The following lemma is an easy but fundamental criterion for primary component using localiza-
tion.

Lemma 72 ([5], Lemma 4)
Let I be an ideal and P its prime divisor. If S is a multiplicatively closed set with P ∩ S = ∅ and Q
is a P-primary ideal, then the following conditions are equivalent.

(A) Q is a primary component of I
(B) Q is a primary component of IK[X]S ∩ K[X]

Proof First, (A) implies (B) from Proposition 4.9 in [1] . For primary decompositions Q of I and
Q′ of IK[X]S ∩ K[X] with Q ∈ Q′, we obtain {Q′ ∈ Q | Q′ ∩ S , ∅} ∪ Q′ is also a primary
decomposition of I. Hence, (B) implies (A).

In particular, one or more isolated primary components of I are isolated in IK[X]S ∩ K[X] if
the localization is not trivial.

Example 73
For I = (x2, xy) ⊂ K[X] = K[x, y], we obtain that (x) is the isolated primary component of both I
and IK[X](x) ∩ K[X] = (x).

We define a special subset of Ass(I), which has a good relationship to localization. The lo-
calization by an isolated set can be expressed as intersection of primary components whose prime
divisors are in the isolated set.

Definition 74 ([1], Chapter 4)
Let I be an ideal. A subset P of Ass(I) is said to be isolated if it satisfies the following condition:
for a prime divisor P′ ∈ Ass(I), if P′ ⊂ P for some P ∈ P, then P′ ∈ P.

Lemma 75 ([1], Theorem 4.10)
Let I be an ideal and P an isolated set contained in Ass(I). For a multiplicatively closed set
S = K[X] \∪P∈P P and a primary decomposition Q of I, IK[X]S ∩ K[X] =

∩
Q∈Q,

√
Q∈P Q.

Example 76
For I = (x2(x + 1), x(x + 1)y) ⊂ K[X] = K[x, y], P = {(x), (x, y)} is an isolated subset of Ass(I) =
{(x), (x + 1), (x, y)}. Let S = K[X] \∪P∈P P. Then, IK[X]S ∩ K[X] = (x) ∩ (x2, y).



Communications of JSSAC Vol. 4 27

The following lemma tells us when primary component intersects a multiplicatively closed set.
It is used to prove Lemma 29, a criterion for localization.

Lemma 77 ([5], Lemma 7)
LetQ be a primary decomposition of I and Q ∈ Q. For a multiplicatively closed set S , the following
conditions are equivalent.

(A) IK[X]S ∩ K[X] ⊂ IK[X]√Q ∩ K[X].
(B) Q ∩ S = ∅.

Proof Show (A) implies (B). As IK[X]√Q ∩ K[X] ⊂ Q, IK[X]S ∩ K[X] =
∩

Q′∈Q,Q′∩S=∅ Q′ ⊂ Q.
Since Q is irredundant, IK[X]S ∩ K[X] has

√
Q-primary component. Thus, Q ∩ S = ∅. Now, we

show (B) implies (A). Then,
√

Q ∩ S = ∅ and Q′ ∩ S = ∅ for any Q′ ∈ Q s.t. Q′ ⊂
√

Q. Thus,
IK[X]√Q ∩ K[X] =

∩
Q′⊂
√

Q Q′ implies IK[X]S ∩ K[X] ⊂ IK[X]√Q ∩ K[X].

Example 78
For I = (x) ∩ (x + 1) ∩ (x2, y) ⊂ Q[X] = Q[x, y], let S = Q[X] \ (x, y). Then, IQ[X]S ∩ Q[X] ⊂
IQ[X]√(x) ∩Q[X] and (x) ∩ S = ∅. On the other hand, IQ[X]S ∩Q[X] 1 IQ[X]√(x+1) ∩Q[X] and
(x + 1) ∩ S , ∅.

The following lemma tells that primary ideal has a similar property to one of prime ideal.

Lemma 79 ([5], Lemma 16)
Let I and J be ideals. Let Q be a primary ideal. If IJ ⊂ Q and J 1

√
Q, then I ⊂ Q. In particular,

if I ∩ J ⊂ Q and J 1
√

Q, then I ⊂ Q.

Proof Let f ∈ I and g ∈ J \
√

Q. Since Q is
√

Q-primary, f g ∈ IJ ⊂ Q implies f ∈ Q.

Example 80
Let I = (x), J = (x + 1) and Q = (x, y2). Then, I ∩ J ⊂ (x(x + 1)) ⊂ (x, y2) = Q and J = (x + 1) 1√

Q = (x, y). Thus, I = (x) ⊂ Q = (x, y2).

Hull-primary ideal has a similar property to one of primary ideal as follows.

Lemma 81 ([5], Lemma 17)
Let I be a P-hull-primary and Q a P-primary ideal. If I ⊂ Q, then hull(I) ⊂ Q.

Proof LetQ be a primary decomposition of I and J =
∩

Q′∈Q,Q′,hull(I) Q′. Then I = hull(I)∩J ⊂ Q
and J 1 P. Since Q is P-primary, we obtain hull(I) ⊂ Q by Lemma 79.

Example 82
Let I = (x2) ∩ (x3, y) ∩ (x + 1, y + 1) and Q = (x). Then, I ⊂ Q and hull(Q) = (x2) ⊂ Q.

Next, we remark the "splitting tool", one of the most important tool for primary decomposition.

Lemma 83 ([14], Proposition 3.53)
Let I and J be ideals. Then, for a sufficiently large integer m,

I = (I : J∞) ∩ (I + Jm).

Example 84
For I = (x2, xy) and J = (x, y),

I = (I : J∞) ∩ (I + J2) = (x) ∩ (x2, xy, y2).



28 Communications of JSSAC Vol. 4

Also, we recall the famous Prime Avoidance Lemma.

Lemma 85 ([1], Proposition 1.11)
(i) Let P1, . . . , Pm be prime ideals and let I be an ideal contained in

∪m
i=1 Pi. Then, I ⊂ Pi for some

i.
(ii) Let I1, . . . , Im be ideals and let P be a prime ideal containing

∩m
i=1 Ii. Then P ⊃ Ii for some i. If

P =
∩m

i=1 Ii, then P = Ii for some i.

Finally, We add a proof of Lemma 18 in Sect. 2.2 as follows.

Lemma 18 ([5], Lemma 19)
Let I and J be ideals, Q a primary ideal and Q a primary decomposition of I. Then,

(Q : J) =


Q (J 1

√
Q),

K[X] (J ⊂ Q),√
Q-primary ideal properly containing Q (J 1 Q, J ⊂

√
Q),

(1)

(Q : J∞) =

{
Q (J 1

√
Q),

K[X] (J ⊂
√

Q), (2)

(I : J) =
∩

Q∈Q,J1
√

Q

Q ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J), (3)

(I : J∞) = (I :
√

J∞) =
∩

Q∈Q,J1
√

Q

Q. (4)

Proof First, (1) can be proved directly from a remark before Proposition 3.56 in [14]. Second,
we show (2). We note that J 1

√
Q implies Jm 1

√
Q for any positive integer m, and thus

(Q : Jm) = Q from (1). Since K[X] is Noetherian, (Q : J∞) = (Q : Jm) for a sufficiently large m.
Thus, we obtain (Q : J∞) = Q if J 1

√
Q. If J ⊂

√
Q, then Jm ⊂ Q for a sufficiently large m and

(Q : J∞) = (Q : Jm) = K[X] from (1). Third, we prove (3). From I =
∩

Q∈Q Q and (1), we obtain

(I : J) = (
∩
Q∈Q

Q : J) =
∩
Q∈Q

(Q : J)

=
∩

Q∈Q,J1
√

Q

(Q : J) ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J) ∩
∩

Q∈Q,J⊂Q

(Q : J)

=
∩

Q∈Q,J1
√

Q

Q ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J) ∩ K[X]

=
∩

Q∈Q,J1
√

Q

Q ∩
∩

Q∈Q,J1Q,J⊂
√

Q

(Q : J).

Finally, we show (4). From I =
∩

Q∈Q Q and (1), we obtain

(I : J∞) =
∩

Q∈Q,J1
√

Q

(Q : J∞) ∩
∩

Q∈Q,J⊂
√

Q

(Q : J∞)

=
∩

Q∈Q,J1
√

Q

Q ∩ K[X] =
∩

Q∈Q,J1
√

Q

Q.

Since J ⊂
√

Q is equivalent to
√

J ⊂
√

Q, we obtain (I : J∞) = (I :
√

J∞).
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A.2 Ideals and Prime Ideals in Experiments

I1(n) =(x2) ∩ (x4, y) ∩ (x3, y3, (z + 1)n + 1) ⊂ Q[x, y, z].

A3,4,5 =((x12 x23 − x13 x22)x31 − x11 x32 x23 + x11 x33 x22 + (x13 x32 − x12 x33)x21,

(x13 x32 − x12 x33)x24 + (−x14 x32 + x12 x34)x23 + (x14 x33 − x13 x34)x22,

(x14 x33 − x13 x34)x25 + (−x15 x33 + x35 x13)x24 + (x15 x34 − x35 x14)x23,

(x42 x23 − x43 x22)x31 − x41 x32 x23 + x41 x33 x22 + (x43 x32 − x42 x33)x21,

(x43 x32 − x42 x33)x24 + (−x44 x32 + x42 x34)x23 + (x44 x33 − x43 x34)x22,

(x44 x33 − x43 x34)x25 + (−x45 x33 + x35 x43)x24 + (x45 x34 − x35 x44)x23)

⊂ Q[xi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 5].

A2,4,4 =(−x21 x12 + x22 x11,−x22 x13 + x23 x12,−x23 x14 + x24 x13, x32 x21 − x31 x22,

x33 x22 − x32 x23, x34 x23 − x24 x33, x42 x31 − x41 x32, x43 x32 − x42 x33,

x44 x33 − x43 x34) ⊂ Q[xi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4].

A2,3,7 =(−x21 x12 + x22 x11,−x22 x13 + x23 x12,−x23 x14 + x24 x13,−x24 x15 + x25 x14,

− x25 x16 + x26 x15,−x26 x17 + x27 x16, x32 x21 − x31 x22, x33 x22 − x32 x23,

x34 x23 − x24 x33, x35 x24 − x25 x34, x36 x25 − x26 x35, x37 x26 − x36 x27)

⊂ Q[xi j | 1 ≤ i ≤ 3, 1 ≤ j ≤ 7].

T1 =(cde f ghiz + cde f h jz + bcdei jz, 3cd f ghz3 + 4bde f gh j + 4bdeh jz2,

2b f ghi jz + f h jz3, 4bce f hz + c f gi jz, cd jz, 3eg jz4 + bcdgi j + 2cdh jz2,

3de f iz + 2de f z2 + 4bcei, 4bce f iz + 3d f h jz2, ce f h jz + bc f iz2 + giz4,

4ceghiz + bce jz) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

T2 =(3bcegz2 + 4bcghi + 2bcez2, bcez + 3dhi, c f giz3 + bcdegh, c f gz4+

3cde f gh, 2bc f giz2 + bcdegh + z6, bchz + 4bcg, 4bcdgiz + 2c f hiz2+

3bd f hi, bde f hz + bz4, 3be f giz + 2ce f gz2 + 4c f hz2, 3b f h + 4 f hi + bz2)

⊂ Q[b, c, d, e, f , g, h, i, z].

T3 =(4be f jkmz3 + 2bcdhi jlm + cdegkmz2, cdegh jlz, 2de f ghilz + 4 jlz6+

de f jlz2, begh jlmz + 4ceghiz2 + bde f lz2) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l,m, z].

T4 =(2c f hiz2 + bde f h, bc f i jz + 4bcghi, 2cde jz + 4cd f j + i jz2, bcd f gi jz+

cdi jz3, 3bcei jz + 3cgi jz2 + beiz3, 4bch jz + cgiz2, beh j, 3cde f hiz+

2bd f g jz + 2bch jz2) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

T5 =(4bc2d2e2gh2iz2 + b2ciz9 + 2bceg2hz5, bcd2e2g2h2, bc f hz5 + b2d f g2iz,

4bc2e2 f 2h2i2z2 + b2c2e2 f h2iz3, 2b2de2 f 2hi2z + 3b2c2e2h2i2)

⊂ Q[b, c, d, e, f , g, h, i, z].

T6 =(4bcd f ghlz + 3bc f hlz3, be f hkl + de f ghz, 3bde f hi jklz + 2c f h jkz5+

bdehkz4, 4be f i jkl + dgklz3, bcde f gh j + 2bcdegi jz + 2bcdh jklz,

cdegi jz + 3bcde f k + 4 f hklz2, 2bdegh jkz + cdez5 + 3egh jz3,

bcdghi jz + cd f hklz + 2bcdhkz2, 2bcde f i + bhi jkl, egh jkz5+

2bce f gh jkl, gilz2 + 2beil, g, 3cde f i jkl + 4bcdg jz3, cdehi jz + 4ceg jz3,

bchkl, cd f ghklz + be f hilz + cd f g jlz, f iz5 + 2cd f ghk + bd f hiz,

be f i jklz2 + 3bcdghi jl, 2bgi jklz + 2bcghil + ce f h jz, 2de f gh jz+
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3ce f hi jz + 3bdghiz) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

T7 =(c f ghi jklz + cdz7, 3bdikz7 + 3bcde f ghikl + 4b f ghkz5, 3be f ghi jkz+

2bcegi jz3, 3c f h jlz + d f h jlz + 4bd f kl, 3be jz4 + bd f g jk + 2beg jz2,

cde f g jkz + 3e f g jlz2 + 4elz5, bcde f gh jk, 4ceh jlz4 + 3ceghi jkl,

e f gh jklz, ik, 4beghi jkz3 + 3bdeghi jkl, cde f kl + dg jklz, 2bghi jlz+

bcdgiz + 4egh jkz, bcehi jklz + cdghi jlz2, 2bcde f glz + 2c f gi jlz2+

chz6, 4bde f h jlz + bdhi jlz + 2de f gklz, 2cdgiklz + cehklz2 + 4cghilz,

ch jkl, 2bcdhi jlz + cgi jz4, bd f hi jkz + 4bdi jkz3 + 2dhlz4)

⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

T8 =(3be jz4 + bd f g jk + 2beg jz2, cde f g jkz + 3e f g jlz2 + 4elz5, bcde f gh jk,

4ceh jlz4 + 3ceghi jkl) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z]

T9 =(3hz4 + 2cd f g, bde f gh + c f gz3 + cgz4, bcgz2 + cde f + de f z, , 3e f gh+

bcez + 2b f z2, 3de f h + 2cegh, dehz + 4cgz2, 2cde f hz + chz3, 3cde f hz+

2c f ghz, 3d f ghz + 2e f hz2 + 2bcgz, bdhz + 2e f z + 2bhz)

⊂ Q[b, c, d, e, f , g, h, z].

T10 =(4cd f h jkz + 4e f hi jz2 + cehiz2, bcd f iz, 3bde f h j + 4cdeghz, cdegkz+

bdiz3, bcdkz2 + 2beg jk, 2cde f hi jz + 3cehi jz3 + bcdhz4, e f h jkz + 3bc f hz,

2bcegiz + 3dghi jz + 3 f ghiz, bd f jz + d f jkz, 4e f hikz + 3be f hi + 2d f ghi,

cdhi jz + 2e f gkz2, bcdgikz2 + bcd f gik, d f gikz, 2bcdghiz + bcegiz2+

bd f i jk, cde f ghi jz, bcdegi jkz + cde f kz4, 4bd f gh jz + bdgkz3 + 2bcdei j,

ce f ghi jkz + 4de f gikz3 + 4eghkz4, bcdgi jkz + cegh jkz2 + 4ce f ghz3)

⊂ Q[b, c, d, e, f , g, h, i, j, k, z].

P1 =(x) ⊂ Q[x, y, z].

P2 =(x13, x23, x33, x43) ⊂ Q[xi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 5].

P3 =(b, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P4 =(e, i, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P5 =(g, h, z) ⊂ Q[b, c, d, e, f , g, h, i, z].

P6 =(h, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l,m, z].

P7 =(b, j, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P8 =( f , g, i) ⊂ Q[b, c, d, e, f , g, h, i, z].

P9 =(z4 + hdb, c, g, k, l) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P10 =(b, c, e, h, i, j) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P11 =(e, k) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P12 =(e, g, z) ⊂ Q[b, c, d, e, f , g, h, z].

P13 =(e, g, k, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, z].

P14 =(x, y) ⊂ Q[x, y, z].

P15 =(x12 x31 − x32 x11, x42 x11 − x41 x12, x42 x31 − x41 x32, x44 x31 − x41 x34,

x44 x32 − x42 x34, x13, x21, x22, x23, x24, x33, x43)

⊂ Q[xi j | 1 ≤ i ≤ 4, 1 ≤ j ≤ 4].

P16 =(x16 x27 − x17 x26, x34 x13 − x33 x14, x37 x16 − x36 x17, x36 x27 − x37 x26,
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x12, x15, x21, x22, x23, x24, x25, x32, x35) ⊂ Q[xi j | 1 ≤ i ≤ 3, 1 ≤ j ≤ 7].

P17 =(e, f , j, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P18 =(c, d, j, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P19 =(−4 f ec + 3d, b, g, h, z) ⊂ Q[b, c, d, e, f , g, h, i, z].

P20 =(l f db + 4higc, e, j,m) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l,m, z].

P21 =(c, d, h, j, z) ⊂ Q[b, c, d, e, f , g, h, i, j, z].

P22 =(c, d, g, i, z) ⊂ Q[b, c, d, e, f , g, h, i, z].

P23 =(b, c, d, e, f , g, h, i, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P24 =(g, i, j, l, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P25 =( f , g, k, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, l, z].

P26 =(c, e, g, h, z) ⊂ Q[b, c, d, e, f , g, h, z].

P27 =(c + 4 j f , b, d, g, h, k, z) ⊂ Q[b, c, d, e, f , g, h, i, j, k, z].
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