
Communications of JSSAC (2012)
Vol. 1, pp. 39 – 66

Improving Suzuki-Sato’s CGS Algorithm by Using
Stability of Gröbner Bases and Basic Manipulations for

Efficient Implementation

Yosuke Kurata ∗

Department of Mathematics, Kobe University

(Received 12/Jan/2010 Accepted 2/Mar/2010)

Abstract

In this paper, we propose improving Suzuki-Sato’s algorithm for computing CGS. This paper
consists of two parts. In the first part, using known algebraic manipulations on affine varieties,
we describe a detail of basic manipulations to improve Suzuki-Sato’s algorithm. In the second
part, we present a new algorithm which improves Nabeshima’s approach to compute a CGS.
Nabeshima’s approach uses Gröbner basis computations together with inequations, which in-
volves an additional temporary variable. The approach sometimes generates time-consuming
Gröbner basis computations. As a result, Nabeshima’s approach is not always faster than
Suzuki-Sato’s original one. Our new algorithm also uses inequations without the additional
variable and works like Suzuki-Sato’s algorithm. So that, it is expected that the new algorithm
reduces generating time-consuming Gröbner basis computations. We compare the runtime
and number of segments measured by the both algorithms and find our algorithm superior in
several cases.

1 Introduction
A comprehensive Gröbner system (CGS) for computing Gröbner bases of parametric polynomial
ideals is used as a systematic tool to classify the roots of parametric polynomial equations. For
example, Kanno, et al. [6] has explored the potential of algebraic approach for parametric poly-
nomial spectral factorization (PPSF). For computing the parametric spectral factor of a parametric
polynomial, a classification of the roots of parametric polynomial equations is needed. For this
purpose, they devised an algebraic algorithm using CGS computation. Shinohara [18] presented
three CGS based algorithms for computing PPSF and showed that the fastest one took 72 hours in
computation of PPSF of a quartic parametric polynomial. So that, from a practical point of view,
an efficient CGS implementation is necessary in order to solve large problems.

There are algorithms for computing CGS: Weispfenning [22, 23], Montes and Manubens [8,
10], and Suzuki and Sato [20]. Suzuki-Sato’s algorithm is the fastest among them in several cases.

∗kurata@math.kobe-u.ac.jp

c© 2012 Japan Society for Symbolic and Algebraic Computation

40 Communications of JSSAC Vol. 1

Given a finite polynomial set F ⊂ K[Ā, X̄], where Ā = (A1, . . . , Am) and X̄ = (X1, . . . , Xn) is
parameters and variables, Suzuki-Sato’s algorithm computes a CGSH of F with respect to <X̄ by
the following algorithm.

1. Compute the reduced Göbner basis G of F with respect to <Ā,X̄ , where <Ā,X̄ is a elimination
term order such that X̄ are always bigger than Ā.

2. If G = {1}, then returnH .

3. If G , {1}, then collect the head coefficients (∈ K[Ā]) of polynomials in G \ K[Ā], that is
H = {h1, . . . , hl} = {HC<X̄

(g) ∈ K[Ā] | g ∈ G \ K[Ā]}.

4. Let h = LCM(H), and add a segment (F ∩ K[Ā], {h},G) toH .

5. Apply this procedure recursively to each G ∪ {hi}, (1 ≤ i ≤ l).

On a computer algebra system equipped with Gröbner bases computations, it is easy to imple-
ment Suzuki-Sato’s CGS algorithm. However the algorithm given above is impractical. In fact,
it requires a large number of steps until the algorithm terminates because of the step 5. Suzuki-
Sato’s algorithm also often produces many segments (F ∩ K[Ā], {h},G) whose parameter spaces
V(F ∩ K[Ā]) \ V(h) overlap each other, so that the computational cost will swell without careful
treatments of superfluous segments. Thus we need an algorithm whose number of steps becomes
small, and an optimal means to obtain irredundant segments.

Suzuki and Sato [20] has referred to them. However they didn’t write their details, and no one
mentioned their details. In the first part of this paper, after we describe useful basic manipulations
to implement CGS algorithm based on Suzuki-Sato’s, we give timing data to show efficiency by
our original implementation equipped with the manipulation. This part will be useful for the reader
who wants to implement the CGS algorithm based on Suzuki-Sato’s.

In the second part of this paper, we present an improvement of Nabeshima’s method [13].
Nabeshima proposed speed-up techniques for Suzuki-Sato’s algorithm in 2007. For a Gröbner
basis G computed in K[Ā, X̄], if we regard G as a Gröbner basis in the polynomial ring over the
polynomial ring (K[Ā])[X̄], the following property often holds:

there exist g1, g2 ∈ G such that HT<X̄
(g1) | HT<X̄

(g2) and g1 , g2. (*)

In Suzuki-Sato’s algorithm, this property generates a lot of segments whose parameter spaces are
small and unnecessary. In order to avoid this problem, Nabeshima introduced a Gröbner basis
computation in which inequations (, 0) are treated. For example, in (*), if we suppose HC<X̄

(g1) ,
0, we can ignore the condition of HC<X̄

(g2) whether it becomes zero or not. To handle the condition
HC<X̄

(g1) , 0, Nabeshima’s method uses an additional temporary variable “r” as r = 1/HC<X̄
(g1)

and replaces g1 with g′1 = HT<X̄
(g1)+r · (g1−HM<X̄

(g1)). Precisely speaking, Nabeshima’s method
is to keep adding a non-zero condition (polynomial) and computing a Gröbner basis together with
the additional variable until the property (*) will not occur. On the other hand, if the property
(*) will not occur, the method works the same as Suzuki-Sato’s one. The author noticed that
this procedure may generate time-consuming Gröbner basis computations. In fact, Suzuki-Sato’s
algorithm is sometimes faster than Nabeshima’s one.

In order to solve this problem, we present another approach which prevents the property (*)
from making a lot of unnecessary segments. This approach is developed on a generalization of
property (*) and without an additional variable “r”. Our approach works basically like Suzuki-
Sato’s algorithm. It collects the parameter conditions in which the property (*) does not occur for

Communications of JSSAC Vol. 1 41

given Gröbner basis G in (K[Ā])[X̄]. In addition, we show that G is stable under the parameter
conditions. Of course, though we do not forget the cost of collecting the parameter conditions, we
find that our approach is more efficient than Nabeshima’s one in several cases. We will show this
by comparing timing data and the number of segments measured by our original implementation
equipped with the basic manipulation given in the first part, and Nabeshima’s one.

Our paper is organized as follows. In Section 2, we define common mathematical notations
and review the original Suzuki-Sato’s CGS algorithm and result of stability of an ideal, which
is a base of Suzuki-Sato’s algorithm. In Section 3, we describe basic manipulations for a CGS
implementation based on Suzuki-Sato’s. In Section 4, we present our main result. We give a
improvement of Nabeshima’s method, a new algorithm using the generalization of (*), and we
show comparisons of timing data and the number of segments.

2 Notations, Definitions and the Original Algorithm
In this section, we describe some notations and definitions used throughout this paper.

For a polynomial f in a polynomial ring equipped with a term order <, HT<(f), HC<(f), and
HM<(f) denote the head term of f with respect to <, the coefficient of HT<(f), and HC<(f) ·
HT<(f) respectively. In addition, for a subset I in the polynomial ring, HT<(I) and HM<(I) denote
{HT<(f) | f ∈ I} and {HM<(f) | f ∈ I} respectively.

K and L denote fields such that L is an algebraic closure of K. X̄ = {X1, . . . , Xn} and Ā =
{A1, . . . , Am} denote sets of variables such that Ā ∩ X̄ = ∅. T (X̄), T (Ā) and T (Ā, X̄) denote the set
of terms of X̄, Ā and Ā ∪ X̄ respectively. <Ā,X̄ denotes a term order on T (Ā, X̄) such that Ā � X̄,
that is any term in T (X̄) is greater than any term in T (Ā), <Ā and <X̄ denote its restriction on T (Ā)
and T (X̄) respectively. N and Q are the set of natural numbers and the field of rational numbers
respectively.

For any ā ∈ Lm, we define the canonical specialization homomorphism
σā : K[Ā] −→ L induced by ā, and we naturally extend it to σā : (K[Ā])[X̄] −→ L[X̄].

For any subset F of K[Ā], V(F) denotes the algebraic set defined by F, that is

V(F) = {ā ∈ Lm | ∀ f ∈ F, f (ā) = 0} ⊂ Lm.

Similarly, if F = { f1, . . . , fk} is a finite set, V(f1, . . . , fk) also denotes its algebraic set. Moreover,
for any algebraic set V ⊂ Km, I(V) denotes the ideal in K[Ā] such that

I(V) = { f ∈ K[Ā] | ∀ā ∈ V, f (ā) = 0}.

For a polynomial f ∈ K[Ā], a finite subset G ⊂ K[Ā], and a term order <Ā, NF(f ,G, <Ā)
denotes one of the normal forms of f modulo G with respect to <Ā. In general, NF(f ,G, <Ā) is
not uniquely determined, however it is uniquely determined if G is a Gröbner basis. For any ideal
I ⊂ K[Ā],

√
I denotes the radical of I.

Definition 1 (CGS)
Let F be a subset of K[Ā, X̄], and S 1, . . . , S l, T1, . . . , Tl be finite subsets of K[Ā]. A finite set

G = {(S 1,T1,G1), . . . , (S l,Tl,Gl)}

of triples is called a comprehensive Gröbner system for F with respect to <X̄ , if (V(S 1) \ V(T1)) ∪
· · · ∪ (V(S l) \ V(Tl)) = Lm and σā(Gi) is a Gröbner basis of the ideal 〈σā(F)〉 in L[X̄] with respect
to <X̄ for all ā ∈ V(S i) \ V(Ti) for each i = 1, . . . , l. Then, each (S i,Ti,Gi) or (V(S i) \ V(Ti),Gi) is
called a segment of G.

42 Communications of JSSAC Vol. 1

For a segment (S ,T,G), (S ,T) or V(S)\V(T) is also called its parameter space or simply called
its case.

Suzuki-Sato’s CGS algorithm is developed on the results of stability of an ideal in a polynomial
ring R[X̄] over Noetherian ring R with identity, which was introduced by Kalkbrener [5].

Definition 2 (Stability of an Ideal)
Let R and R′ be Noetherian commutative rings with identity, and let π be a ring homomorphism
from R to R′, then an ideal I in R[X̄] is called stable under π and <X̄ if it satisfies

〈π(〈HM<X̄
(I)〉)〉 = 〈HM<X̄

(π(I))〉.

Theorem 3 (Kalkbrener 1997)
Let π a ring homomorphism from a Noetherian ring R with identity to a field K, I an ideal in R[X̄],
and G = {g1, . . . , gr} be a Gröbner basis of I with respect to <X̄ . We assume that the gis are ordered
in such a way that π(HC(gi)) , 0 for 1 ≤ i ≤ r and π(HC(g j)) = 0 for r + 1 ≤ j ≤ s. Then the
following three conditions are equivalent.

1. I is stable under π and <X̄ .

2. {π(g1), . . . , π(gr)} is a Gröbner basis of 〈π(I)〉 ⊂ K[X̄] with respect to <X̄ .

3. For every j ∈ {r + 1, . . . , s}, the polynomial π(g j) is reducible to 0 modulo
{π(g1), . . . , π(gr)}.

In Suzuki-Sato [20], they showed next lemma, which is an easy consequence of Theorem 3,
and proposed an algorithm for computing CGS.

Lemma 4
For an ideal I in (K[Ā])[X̄], let G = {g1, . . . , gs} be a Gröbner basis of I with respect to <X̄ such
that gi < K[Ā] for 1 ≤ i ≤ r and g j ∈ K[Ā] for r + 1 ≤ j ≤ s. Then σā(G) is a Gröbner basis of
〈σā(I)〉 with respect to <X̄ for any ā ∈ V(gr+1, . . . , gs) \

(
V(HC<X̄

(g1)) ∪ · · · ∪ V(HC<X̄
(gr))
)

in Lm.

For a Gröbner basis G ⊂ (K[Ā])[X̄], this lemma shows that we can determine a segment
(S , T,G), where S = {gr+1, . . . , gs}, T = {LCM(HC<X̄

(g1), . . . ,HC<X̄
(gr))}, and LCM denotes the

least common multiple. However we cannot know whether σā(G) becomes a Gröbner basis or not
for ā ∈ V(T). In order to deal with ā ∈ V(T), we compute a Gröbner basis of G ∪ T ⊂ (K[Ā])[X̄]
again. Thus we can compute a CGS of F by the following algorithm. The termination of the
algorithm and more details can be found in [20].

Algorithm 5
CGS((a1, . . . , ad), F, <Ā,X̄)

INPUT: A d-tuple (a1, . . . , ad) of natural numbers, a finite set F ⊂ K[Ā, X̄], and
a term order <Ā,X̄ . · · · (1)

OUTPUT: A set H of segments (No, S ,T,G), where No ∈ Nk, S , T ⊂ K[Ā], and
G is the reduced Gröbner basis in K[Ā, X̄].

BEGIN
G ← ReducedGB(F, <Ā,X̄);
H ←

{(
(a1, . . . , ad), F ∩ K[Ā],G ∩ K[Ā], {1}

)}
; · · · (2)

IF 1 ∈ G THEN
returnH ;

Communications of JSSAC Vol. 1 43

END IF
h←− LCM(h1, . . . , hl);

(
{h1, . . . , hl} = {HC<X̄

(g) ∈ K[Ā] | g ∈ G}
)

H ← H ∪
{(

(a1, . . . , ad),G ∩ K[Ā], {h},G \ K[Ā]
)}

;
FOR i = 1, . . . , l DO

H ← H ∪ CGS((a1, . . . , ad, i),G ∪ {hi}, <Ā,X̄);
END FOR
returnH ;

END

Remark 6
We have the following remarks in the algorithm CGS.

(1) A d-tuple (a1, . . . , ad) is a serial number of the segment which is determined at the call of CGS.
Using this number, we can represent the “depth” or “width” of the segment (see Fig. 1). In this
case, its depth is d and the segment is generated adth at depth d.

Fig. 1:

D = max
{
d |
(
(a1, . . . , ad), S ,T,G

)
∈ H
}

denotes the maximum depth of CGSH .

(2) In general, an input F need not be a Gröbner basis with respect to <Ā,X̄ , so that for a Gröbner
basis G of F, V(F ∩ K[Ā]) may be different from V(G ∩ K[Ā]). If both parameter spaces are
different, then the reduced Gröbner basis of σā(F) is {1} for any ā ∈ V(F∩K[Ā])\V(G∩K[Ā]).
In Suzuki-Sato’s algorithm, a Gröbner basis becomes {1} when and only when V(F ∩ K[Ā]) ,
V(G ∩ K[Ā]).

3 Basic Manipulations for CGS Implementation
An algorithm based on CGS often generates many superfluous segments, so that it gets into compu-
tational difficulties if we do not apply optimizations. In order to avoid these difficulties, we must
reduce the useless segments, which appear during a computation, by treating their parameter spaces
carefully.

In this section, we give details of basic manipulations to implement a high-speed CGS compu-
tation based on CGS.

44 Communications of JSSAC Vol. 1

3.1 Preliminary
In this subsection, we describe manipulations for parameter spaces. First, for a segment (S ,T,G),
we show how to check whether a parameter space is empty or not. To see this, it is enough to check
that V(S) ⊂ V(T) in Lm, namely it is enough to check that I(V(S)) ⊃ I(V(T)) ⇐⇒

√
〈S 〉 ⊃ T .

we can check it by using the radical membership test.

Algorithm 7
CaseIsZero((S ,T), <Ā)

INPUT: A parameter space (S ,T), and a term order <Ā on T (Ā).
OUTPUT: “true” if V(S) \ V(T) is empty, otherwise “false”.

BEGIN
Y ← A temporary variable except Ā ∪ X̄;
FOR EACH f ∈ T DO

B← ReducedGB({1 − Y f } ∪ S , <Ā);
IF B , {1} THEN

return false;
END IF

END FOR
return true;

END

Next, for two segments (S , T,G) and (S ′,T ′,G′), we show how to check whether or not the
intersection of both parameter spaces is empty, namely we check whether (V(S) \V(T))∩ (V(S ′) \
V(T ′)) is empty or not.

From (V(S) \ V(T)) ∩ (V(S ′) \ V(T ′)) = (V(S) ∩ V(S ′)) \ (V(T) ∪ V(T ′)) = V(S ∪ S ′) \
V(〈T 〉 ∩ 〈T ′〉), it is enough to check that V(S ∪ S ′) \V(〈T 〉 ∩ 〈T ′〉) = ∅ eventually. Here a Gröbner
basis of the ideal intersection 〈T 〉 ∩ 〈T ′〉 can be computed. More details can be found in [1, 2].
IntersectionGB bellow is a function for computing a Gröbner basis of an ideal intersection.

Algorithm 8
CaseIsDisjoint((S ,T), (S ′,T ′), <Ā)

INPUT: Two parameter spaces (S ,T) and (S ′,T ′), and a term order <Ā on T (Ā).
OUTPUT: “true” if (V(S) \ V(T)) ∩ (V(S ′) \ V(T ′)) is empty, otherwise “false”.

BEGIN
U ← IntersectionGB(T,T ′, <Ā);
return CaseIsZero((S ∪ S ′,U), <Ā);

END

Furthermore, for subsets S ,T ⊂ K[Ā], we define a function
VarietyIsDisjoint(S ,T, <Ā) to check whether V(S) ∩ V(T) is empty or not. This function
outputs “true” if the reduced Gröbner basis of S ∪ T is {1}, otherwise it outputs “false”.

For two segments (S ,T,G) and (S ′,T ′,G′), How do we compute the subtraction of both pa-
rameter spaces? Namely, how do we compute generators of algebraic sets V and W such that
V \ W = (V(S) \ V(T)) \ (V(S ′) \ V(T ′))? In order to see the answer, we first show next lemma
concerning to decompose into disjoint three parameter spaces from the union of both parameter
spaces.

Communications of JSSAC Vol. 1 45

Lemma 9
Let (S ,T) and (S ′,T ′) be parameter spaces. If (V(S) \ V(T)) ∩ (V(S ′) \ V(T ′)) , ∅, then (V(S) \
V(T))∪(V(S ′)\V(T ′)) =

(
V(S ′)\V(T ′)

)
∪
(
(V(S)∩V(S ′)∩V(T ′))\V(T)

)
∪
(
V(S)\(V(S ′)∪V(T))

)
.

Moreover the three sets of right-hand side are parameter spaces respectively and they are disjoint
each other.

Proof It is easy to see that (V(S) ∩ V(S ′) ∩ V(T ′)) \ V(T) = V(S ∪ S ′ ∪ T ′) \ V(T) and V(S) \
(V(S ′) ∪V(T)) = V(S) \V(〈S ′〉 ∩ 〈T 〉), thus the three sets of right-hand side are parameter spaces
respectively.

Next, we show disjointness. We set C1 = V(S ′) \ V(T ′), C2 = (V(S) ∩ V(S ′) ∩ V(T ′)) \ V(T)
and C3 = V(S) \ (V(S ′) ∪ V(T)). We first consider C1 and C2. C2 ⊂ V(T ′) implies C1 ∩ C2 = ∅.
Next we consider C1 and C3. C1 ⊂ V(S ′) implies C1 ∩ C3 = ∅. Finally we consider C2 and C3.
C2 ⊂ V(S ′) implies C2 ∩C3 = ∅.

Finally, we show the equality. We have already known the disjointness, so that it is enough to
show the equation

(
(V(S) \V(T)) ∪ (V(S ′) \V(T ′))

)
\ (V(S ′) \V(T ′)) = (V(S) \V(T)) \ (V(S ′) \

V(T ′)) = C2 ∪C3. We will show this by calculation.

(V(S) \ V(T)) \ (V(S ′) \ V(T ′))
=
(
(V(S) ∩ (V(S ′) ∩ V(T ′))) \ V(T)

)
∪
(
(V(S) \ V(T)) \ V(S ′)

)
=
(
(V(S) ∩ V(S ′) ∩ V(T ′)) \ V(T)

)
∪
(
V(S) \ (V(S ′) ∪ V(T))

)

Proposition 10
Let (S ,T) and (S ′,T ′) be parameter spaces. Then

(V(S) \ V(T)) \ (V(S ′) \ V(T ′)) =
(
V(S ∪ S ′ ∪ T ′) \ V(T)

)
∪
(
V(S) \ (V(〈S ′〉 ∩ 〈T 〉))

)
.

Moreover two parameter spaces of right-hand side are disjoint.

Algorithm 11
CaseSubtraction((S ,T,G), (S ′, T ′,G′)), <Ā)

INPUT: Two segments (S ,T,G) and (S ′,T ′,G′), and a term order <Ā on T (Ā).
OUTPUT: A finite set S of segments. For parameter spaces of segments in S are

disjoint each other, and its union coincides with (V(S)\V(T))\ (V(S ′)\
V(T ′)).

BEGIN
S ← ∅;
IF CaseIsZero((S ∪ S ′ ∪ T ′,T), <Ā) = false THEN

S ← {(S ∪ S ′ ∪ T ′,T,G)} ∪ S;
END IF
IF CaseIsZero((S , S ′ · T), <Ā) = false THEN

U ← IntersectionGB(S ′,T, <Ā);
S ← {(S ,U,G)} ∪ S;

END IF
return S;

END

46 Communications of JSSAC Vol. 1

3.2 Using Square Free Computation and Factorization
For a polynomial f ∈ K[Ā], The factorization of f given by f = pn1

1 · · · p
nl
l implies that V(f) =

V(p1) ∪ · · · ∪ V(pl). As a result, we always have deg(f) ≥ deg(pi) (1 ≤ i ≤ l), and coefficients
of polynomials pi become small. Furthermore in CGS, we empirically know that the cost of a
factorization and a square-free computation tend to be smaller than that of a Gröbner basis com-
putation. Also it is expected that these computations can reduce the maximum depth of recurrent
algorithm. Using this idea and manipulations of parameter spaces given previous subsection, we
can reformulate CGS.

Algorithm 12
CGS1((a1, . . . , ad), F, <Ā,X̄)

INPUT: A d-tuple (a1, . . . , ad) of natural numbers, a finite set F ⊂ K[Ā, X̄], and
a term order <Ā,X̄ .

OUTPUT: A set H of segments (No, S ,T,G), where No ∈ Nk, S , T ⊂ K[Ā], and
G is the reduced Gröbner basis in K[Ā, X̄].

BEGIN
G ← ReducedGB(F, <Ā,X̄);
IF CaseIsZero((F ∩ K[Ā],G ∩ K[Ā]), <Ā) = false THEN

H ←
{(

(a1, . . . , ad), F ∩ K[Ā],G ∩ K[Ā], {1}
)}

;
END IF
IF 1 ∈ G THEN

returnH ;
END IF
{p1, . . . , ps} ←

∪
g∈G\K[Ā]

Factors(HC<X̄
(g)); · · · (1)

p← p1 · · · · · ps;
IF VarietyIsDisjoint(G ∩ K[Ā], {p}, <Ā) = true THEN · · · (2)

H ← H ∪
{(

(a1, . . . , ad),G ∩ K[Ā], {1},G \ K[Ā]
)}

;
returnH ;

ELSE
IF CaseIsZero((G ∩ K[Ā], {p}), <Ā) = false THEN

H ← H ∪
{(

(a1, . . . , ad),G ∩ K[Ā], {p},G \ K[Ā]
)}

;
END IF
FOR i = 1, . . . , s DO

IF ReducedGB((G ∩ K[Ā]) ∪ {pi}, <Ā) , {1} THEN · · · (3)
H ← H ∪ CGS1((a1, . . . , ad, i),G ∪ {pi}, <Ā,X̄);

END IF
END FOR
returnH ;

END IF
END

Remark 13
We have the following remarks in the algorithm CGS1.

(1) Let {h1, . . . , hl} be the set of the head coefficient (∈ K[Ā]) of every g ∈ G \ K[Ā] with respect
to <X̄ . It is easy to see V(h1 · · · hl) = V(p) = V(p1) ∪ · · · ∪ V(ps). A function Factors(f)
computes the set of all prime factors of f ∈ K[Ā] over K.

(2) In general, for a segment (S ,T,G), we have V(S) \ V(T) = V(S) if

V(S) ∩ V(T) = ∅ (*1).

Communications of JSSAC Vol. 1 47

Then the (S , {1},G) is same as the (S ,T,G) as a segment. In this algorithm, it is not necessary
to call CGS1 again when (*1) holds.

(3) If the reduced Gröbner basis Gi of (G ∩ K[Ā]) ∪ {pi} is {1}, the reduced Gröbner basis of
F = G ∪ {pi} must be {1}. Furthermore the Gröbner basis computation of Gi with respect to <Ā
is still faster than that of F with respect to the elimination order <Ā,X̄ . Therefore we should use
step (3) in order to improve the performance.

Example 14
In Table 1, we compare two algorithms: “CGS with the manipulations of parameter spaces (with
MPS)” and “CGS1”. In the table, “Segments” means number of segments, “Max Depth” means
maximum depth of a tree structure, and “Total Time (sec.)” shown in second. The details of
problems and the computational environment can be found in Appendix A.

Problem Algorithm Segments Max Depth Total Time (sec.)
S2 CGS with MPS 25 11 14.94

CGS1 24 7 1.61
S3 CGS with MPS 16 7 20.80

CGS1 19 5 2.56
S4 CGS with MPS 39 7 144.59

CGS1 37 6 8.64

Table 1:

3.3 Using Minimal Gröbner Basis on (K[Ā])[X̄]

In Suzuki-Sato’s algorithm, a Gröbner basis F ⊂ (K[Ā])[X̄] with respect to <X̄ is obtained by
Gröbner basis computation in K[Ā, X̄] with respect to the elimination order <Ā,X̄ . A Gröbner basis
in (K[Ā])[X̄] sometimes contains superfluous polynomials even though we compute the reduced
Gröbner basis G in K[Ā, X̄]. This is a disadvantage in efficiency.

Example 15
For a polynomial set F = {aX + 1, bY + Y, aZ + bZ + Z} ⊂ (Q[a, b])[X,Y,Z], let <{a,b} the
graded reverse lexicographic order such that b <{a,b} a, <{X,Y,Z} the lexicographic order such that
Z <{X,Y,Z} Y <{X,Y,Z} X, and <{a,b},{X,Y,Z} be the elimination order induced by <{a,b} and <{X,Y,Z} such
that {a, b} � {X, Y,Z}. Then the reduced Gröbner basis of F with respect to <{a,b},{X,Y,Z} is

G = {g1, g2, g3, g4, g5} = {(a + b + 1)Z, (b + 1)Y, YZ, aX + 1, (b + 1)XZ − Z}.

In this situation, we have

HM<{X,Y,Z} (g5) ∈ 〈HM<X,Y,Z (g1),HM<X,Y,Z (g2),HM<X,Y,Z (g3),HM<X,Y,Z (g4)〉

Indeed, g5 = Xg1 − Zg4. This implies that g5 is redundant as the Gröbner basis G in (K[Ā])[X̄].

Therefore, we introduce the concept of minimal Gröbner bases in polynomial rings over a
polynomial ring.

Definition 16 (Minimal Gröbner Basis)
Let G ⊂ (K[Ā])[X̄] be a Gröbner basis with respect to <X̄ . Then G is called a minimal Gröbner
basis if it satisfies that

48 Communications of JSSAC Vol. 1

for every g in G, HM<X̄
(g) < 〈HM<X̄

(G \ {g})〉.

Let G be a Gröbner basis of an ideal I ⊂ (K[Ā])[X̄] with respect to <X̄ . From the definition of
Gröbner bases, if HM<X̄

(g) lies in 〈HM<X̄
(G \ {g})〉 for some g ∈ G, G \ {g} is also a Gröbner basis

of I. Thus, we can compute a minimal Gröbner basis by repeating the above process. Moreover,
we can check whether or not HM<X̄

(g) lies in 〈HM<X̄
(G \ {g})〉 by the following proposition.

Proposition 17
Let G be a Gröbner basis in (K[Ā])[X̄]. For a g ∈ G, let H = {HC<X̄

(g′) ∈ K[Ā] | g′ ∈ G \
{g}, HT<X̄

(g′) | HT<X̄
(g)}, and HG be a Gröbner basis of H with respect to <Ā. Then HM<X̄

(g) ∈
〈HM<X̄

(G \ {g})〉 if and only if HG , ∅ and NF(HC<Ā
(g),HG, <Ā) = 0.

Algorithm 18
MinimalSet(G, <Ā, <X̄)

INPUT: A Gröbner basis G ⊂ (K[Ā])[X̄], and term orders <Ā and <X̄ .
OUTPUT: A minimal Gröbner basis Gmin ⊂ (K[Ā])[X̄].

BEGIN
Gmin ← ∅;
FOR EACH g ∈ G DO

H ← {HC<X̄
(g′) | g′ ∈ G \ {g}, HT<X̄

(g′) | HT<X̄
(g)};

IF H , ∅ THEN
HG ← ReducedGB(H, <Ā);
IF NF(HC<X̄

(g),HG, <Ā) , 0 THEN
Gmin ← Gmin ∪ {g};

END IF
ELSE

Gmin ← Gmin ∪ {g};
END IF

END FOR
return Gmin;

END

Nabeshima [12] dealt with the concept of reduced Gröbner basis in (K[Ā])[X̄], its uniqueness,
and its computation. He showed that it takes high cost to compute the uniquely determined strong
reduced Gröbner basis. Consequently, from a practical point of view computing strong reduced
Gröbner basis has no advantage unless we need reducedness or uniqueness.

Example 19
In Table 2, we compare two algorithms: “CGS1 only” and “CGS1 with minimal Gröbner basis
computation (with MinGB)”. In the table, “Min Time” is a time in seconds for MinimalSet. The
details of problems and the computational environment can be found in Appendix A.

Problem Algorithm Segments Min Time Total Time
S1 CGS1 only 36 *** 468.6

CGS1 with MinGB 27 8.4 296.1
N1 CGS1 only 52 *** 19.97

CGS1 with MinGB 16 0.17 1.06
N2 CGS1 only 57 *** 58.09

CGS1 with MinGB 33 1.78 9.16

Table 2:

Communications of JSSAC Vol. 1 49

We can see that “CGS1 with MinGB” is faster than “CGS1 only”. However we remark that
MinimalSet may be a costly computation because it needs a Gröbner basis computation and a
normal form computation over Q, and these computation over Q may be costly. We have equipped
our implementation with switch for using MinimalSet. We can choose both of algorithms easily
when we compute CGS by our implementation.

3.4 Eliminating Duplicated Parameter Spaces
Suzuki-Sato’s algorithm does not require that parameter spaces of segments are pairwise disjoint,
so that keeping unnecessary duplicated parameter spaces involves a disadvantage for computa-
tional efficiency. In order to avoid this disadvantage, we give a mechanism to remove duplicated
parameter spaces whenever they appear.

First, we define a partial order on serial numbers contained in segments.

Definition 20
For two segments (No1, S 1,T1,G1) and (No2, S 2,T2,G2) with No1 = (a1, . . . , ai) and No2 =

(b1, . . . , b j), We say that No1 � No2 if

i ≤ j and a1 = b1, a2 = b2, . . . , ai = bi.

In this case, the segment (No1, S 1,T1,G1) is called an ancestor of (No2, S 2,T2,G2), and
(No2, S 2,T2,G2) is also called a descendant of (No1, S 1,T1,G1). Moreover they are called a parent
and a child respectively if j = i + 1.

In CGS1, for two segments (No1, S 1,T1,G1) and (No2, S 2,T2,G2) with No1 � No2, we always
have V(S 1) ⊃ V(S 2), however we must not remove (No2, S 2, T2,G2) because V(S 1) \ V(T1) 2
V(S 2). In contrast,

Proposition 21
For two segments (No1, S 1,T1,G1) and (No2, S 2,T2,G2), if

No1 � No2 and V(S 1) ⊃ V(S 2),

then (No2, S 2,T2,G2) is removable.

Using this proposition, we can completely remove useless segments, however a large number
of radical membership tests (Gröbner bases computation) to check V(S 1) ⊃ V(S 2) is necessary. As
a result, it probably gives damage to computational efficiency. In order to avoid this problem, we
use the ideal membership test instead of the radical membership test.

Corollary 22
For two segments (No1, S 1,T1,G1) and (No2, S 2,T2,G2). If

No1 � No2 and 〈S 1〉 ⊂ 〈S 2〉

then (No2, S 2,T2,G2) is removable.

In this case, we remark that even if V(S 1) ⊃ V(S 2), we may have S 1 1 〈S 2〉. We can check
S 1 ⊂ 〈S 2〉 completely by using normal form computation only when S 2 is a Gröbner basis.

Actually, it is more efficient to use the radical membership test until the algorithm arrives at
given depth and the ideal membership test at stages that are deeper than it.

50 Communications of JSSAC Vol. 1

Algorithm 23
ElimSP((No0, S 0),S,N, <Ā)

INPUT: A pair (No0, S 0) of a serial number No0 and a Gröbner basis S 0 ⊂ K[Ā],
a finite set S of pairs, a natural number N, and a term order <Ā. · · ·
(1)

OUTPUT: “true” if the segment having a serial number No0 is removable, other-
wise “false”.

BEGIN
FOR EACH (No, S) ∈ S DO

IF No � No0 THEN
IF Length(No) ≤ N THEN · · · (2)

IF CaseIsZero((S 0, S), <Ā) = true THEN · · · (3)
return true;

END IF
ELSE

Flg← 1;
FOR EACH f ∈ S and Flg = 1 DO · · · (4)

IF NF(f , S 0, <Ā) , 0 THEN
Flg← 0;

END IF
END FOR
IF Flg = 1 THEN

return true;
END IF

END IF
END IF

END FOR
return false;

END

Remark 24
We have the following remarks in the algorithm ElimSP.

(1) A pair (No0, S 0) is made from the segment (No0, S 0,T0,G0) and S 0 is a Gröbner basis with
respect to <Ā. The set S consists of pairs (No, S) made from segments (No, S ,T,G) which have
already been computed and determined as ones in the final CGS. A natural number N denotes
the fixed depth. The algorithm uses the radical membership test if a depth of the serial number
is equal or smaller than N, otherwise it uses the ideal membership test in order to remove
useless segments.

(2) A function Length returns the depth of a given serial number. For example, Length(No) = d
for a No = (a1, . . . , ad).

(3) We can check V(S 0) ⊂ V(S) by CaseIsZero((S 0, S), <Ā). We remark that the function
CaseIsZero uses the radical membership test.

(4) We check whether S ⊂ 〈S 0〉 or not by using the ideal membership test at this FOR loop.

Example 25
In Table 3, we compare two algorithms: “CGS1 with the eliminating duplicated parameter spaces
(with Elim)” and “CGS1 without it”. In the table, “Elim Time” is the time for ElimSP in seconds.
The details of problems and the computational environment can be found in Appendix A.

In our implementation, the fixed number N in ElimSP is set at 3 tentatively. The number N can
be changed easily in our implementation.

Communications of JSSAC Vol. 1 51

Problem Algorithm Segments Elim Time Total Time
S2 CGS1 without Elim 1156 *** 5.79

CGS1 with Elim 24 0.06 1.67
S4 CGS1 without Elim 93 *** 9.47

CGS1 with Elim 37 0.06 8.62
M1 CGS1 without Elim 2311 *** 11.15

CGS1 with Elim 113 0.22 2.58

Table 3:

3.5 Using Prime Ideal Decomposition
The algorithm CGS1 works basically as follows. For an input ((a1, . . . , ad), F, <Ā,X̄), it computes a
Gröbner basis G of F first. Next it computes the union of all the prime factors of the every head
coefficients of polynomials in G \ K[Ā]. Finally it calls CGS1 itself again after it adds each prime
factor into G. We call this flow factorization method. More detail of factorization method is as
follows.

• Factorization method

1. For an input F ⊂ K[Ā, X̄], compute a Gröbner basis G of F with respect to <Ā,X̄ .

2. Collect every head coefficient of G \ K[Ā], that is H = {HC<X̄
(g) ∈ K[Ā] | g ∈ G \ K[Ā]}.

3. Let {p1, · · · , ps} be the union of prime factors of all polynomials in H.

4. Add pi into G (G∪{pi}) for each 1 ≤ i ≤ s, and apply this procedure recursively for G∪{pi}.

It is possible to improve the efficiency by using prime ideal decomposition in K[Ā] instead of
adding polynomials. More detail is as follows.

• Prime ideal decomposition method

1. For an input F ⊂ K[Ā, X̄], computes a Gröbner basis G of F with respect to <Ā,X̄ .

2. Collect every head coefficient of G \ K[Ā], that is H = {HC<X̄
(g) ∈ K[Ā] | g ∈ G \ K[Ā]}.

3. Let {p1, · · · , pt} be the union of prime factors of all polynomials in H.

4. Compute the irredundant prime ideal decomposition of each radical of the ideal 〈(G∩K[Ā])∪
{pi}〉. Let {P1, P2, . . . , Ps} be the union of isolated prime components of the every irredun-
dant prime ideal decomposition. That is, for every irredundant prime ideal decomposition√
〈(G ∩ K[Ā]) ∪ {pi}〉 = Pi,1∩Pi,2∩· · ·∩Pi,ui , let {P1, P2, . . . , Ps} be the set of isolated prime

components of ∪
1≤i≤t

{Pi,1, Pi,2, . . . , Pi,ui }.

5. Join Pi with G (G ∪ Pi) for each 1 ≤ i ≤ s, and apply this procedure recursively for G ∪ Pi.

Proposition 26
Even though we use the prime ideal decomposition method instead of the factorization method, the
algorithm CGS1 terminates.

52 Communications of JSSAC Vol. 1

Proof For the factorization method, we remark that the algorithm always terminate because 〈G ∩
K[Ā]〉 (〈(G ∩ K[Ā]) ∪ {pi}〉 holds at every depth. Since {P1, P2, . . . , Ps} is irredundant prime

component, for any 1 ≤ i ≤ s there exists 1 ≤ j ≤ t such that
√
〈(G ∩ K[Ā]) ∪ {p j}〉 (Pi. This

implies 〈G ∩ K[Ā]〉 (Pi, hence the algorithm using the prime ideal decomposition method always
terminates by the same reason of the proof of the factorization method (original Suzuki-Sato’s
algorithm).

Example 27
In Table 4, we compare two algorithms: “CGS1 with the factorization method (with Fact)” and
“CGS1 with the prime ideal decomposition method (with Prim)”. The details of problems and the
computational environment can be found in Appendix A.

Problem Algorithm Segments Total Time (sec.)
S3 CGS1 with Fact 17 2.50

CGS1 with Prim 15 0.87
M2 CGS1 with Fact 33 8.50

CGS1 with Prim 30 6.34

Table 4:

Of course, in general, the prime decomposition of an ideal is a costly computation, so that this
method is not always faster than the other one. We should keep in mind that it is one of methods
which are worth trying.

3.6 Using the Stability Condition of Zero-dimensional Radical Ideals
In [5], Kalkbrener showed the following theorem in addition to Theorem 3.

Theorem 28
Let π be a ring homomorphism from a Noetherian ring R with identity to a field K, and let J ⊂ R
be an ideal such that J ⊂ ker(π). Then the following conditions are equivalent.

1. ker(π) is an isolated prime ideal of J which coincide with the corresponding primary compo-
nents.

2. For any ideal I ⊂ R[X̄] such that I ∩ R = J and any term order <X̄ , I is stable under π and <X̄ .

The following corollary is an easy consequence of Theorem 28

Corollary 29
For an ideal I ⊂ (K[Ā])[X̄], if I ∩ K[Ā] is a zero-dimensional radical ideal in K[Ā], then I is stable
under σā and <X̄ for any ā ∈ V(I ∩ K[Ā]).

The following two lemmas are important.

Lemma 30
For an ideal I ⊂ K[Ā, X̄], let J be the ideal in K[Ā, X̄] generated by I ∩ K[Ā] ⊂ K[Ā], and J′ be the
ideal in K[Ā, X̄] generated by

√
I ∩ K[Ā] ⊂ K[Ā] respectively. Then

J′ =
√

J.

Communications of JSSAC Vol. 1 53

Proof We first show J′ ⊂
√

J. For any generator f ∈
√

I ∩ K[Ā] in J′, there exists an M ∈ N
such that f M ∈ I ∩ K[Ā], thus f M ∈ J. This implies f ∈

√
J.

Next we show J′ ⊃
√

J. From the definition of J and J′, we obviously have the J ⊂ J′. Taking
the radical of the both, we have the

√
J ⊂
√

J′. Thus it is enough to show the J′ =
√

J′.
J′ ⊂

√
J′ is obvious, thus we show J′ ⊃

√
J′. For any f ∈

√
J′, we suppose that f is

ordered with respect to <X̄ , where <X̄ is any term order on T (X̄), that is f = c1X̄α1 + c2X̄α2 + · · · +
c jX̄α j , (ci ∈ K[Ā], X̄α1 >X̄ X̄α2 >X̄ · · · >X̄ X̄α j). Then there exists an M ∈ N such that f M ∈ J′.
For this f M , it can be written as

f M = (c1X̄α1)M + (monomials which have the term less than X̄α1 M w.r.t. >X̄).

Then we have cM
1 ∈
√

I ∩ K[Ā] because f M also can be written as f M =
∑

i digi, (di ∈ K[Ā, X̄], gi ∈√
I ∩ K[Ā]), this shows that cM

1 can be written as cM
1 =

∑
i h1,igi, (h1,i ∈ K[Ā]). This implies

c1X̄α1 ∈ J′.

Next we set f1 = f − c1X̄α1 . Then f1 ∈
√

J′, thus applying above argument again, we obtain
c2X̄α2 ∈ J′. Repeating this way, we obtain c1X̄α1 , . . . , c jX̄α j ∈ J′. This implies f ∈ J′.

Lemma 31
For an ideal I ⊂ K[Ā, X̄], let J be an ideal in K[Ā, X̄] generated by I ∩ K[Ā] ⊂ K[Ā] and J′ be an
ideal in K[Ā, X̄] generated by

√
I ∩ K[Ā] ⊂ K[Ā] respectively. Then

(I + J′) ∩ K[Ā] =
√

I ∩ K[Ā]

Proof (I + J′) ∩ K[Ā] ⊃
√

I ∩ K[Ā] is obvious.
We show (I + J′) ∩ K[Ā] ⊂

√
I ∩ K[Ā]. For any f ∈ (I + J′) ∩ K[Ā], there exists a p ∈ I and

a q ∈ J′ such that f = p + q. Since J′ =
√

J obtained by Lemma 30, there exists an M ∈ N such
that qM ∈ J ⊂ I. Thus f M = (p + q)M ∈ I. We consequently have f M ∈ I ∩ K[Ā] since f M ∈ K[Ā].
This implies f ∈

√
I ∩ K[Ā].

Using the above result, if 〈G ∩ K[Ā]〉 becomes zero-dimensional during computing a CGS, we
do not need to compute segments at deeper stages than the stage, so that we determine a terminal
segment at the stage. Specifically, we insert the following algorithm into CGS1

Algorithm 32
ZeroDimRoutine((a1, . . . , ad), F, <Ā,X̄)

INPUT: A d-tuple (a1, . . . , ad) of natural numbers, a finite set F ⊂ K[Ā, X̄] such
that 〈F ∩ K[Ā]〉 is zero-dimensional, and a term order <Ā,X̄ .

OUTPUT: A set H of segments (No, S ,T,G), where No ∈ Nk, S , T ⊂ K[Ā], and
G is the reduced Gröbner basis in K[Ā, X̄].

BEGIN
Gz ← ZeroRadical(F ∩ K[Ā], <Ā);
Fz ← (F \ K[Ā]) ∪Gz;
G ← ReducedGB(Fz, <Ā,X̄);
return

{(
(a1, . . . , ad),G ∩ K[Ā], {1},G \ K[Ā]

)}
;

END

In the algorithm, Fz is a set of generator of 〈F〉+ 〈Gz〉 because 〈F〉+ 〈Gz〉 = 〈F \K[Ā]〉+ 〈Gz〉 =
〈(F \ K[Ā]) ∪Gz〉, where 〈F〉 ∩ K[Ā] ⊂ 〈Gz〉.

54 Communications of JSSAC Vol. 1

Example 33
In Table 5, we compare two algorithms: “CGS1 with the zero-dimensional radical manipulation
(with Zrad)” and “CGS1 without it”. In the table, “NZC Time” is the time in seconds for computing
segments which have a non zero-dimensional parameter space. The details of problems and the
computational environment can be found in Appendix A.

Problem Algorithm Segments NZC Time Total Time
S5 CGS1 without Zrad 51 4893 6540

CGS1 with Zrad 45 3960 4422
S6 CGS1 without Zrad *** *** > 12 hours

CGS1 with Zrad 35 403 21563

Table 5:

If a zero-dimensional parameter space does not appear during computing a CGS, we cannot
use this method. In [7], discrete comprehensive Gröbner bases (DCGB) also gives a parametric
Gröbner basis for a zero-dimensional parameter space. Thus we can also use a DCGB computation
for this situation.

4 An Efficient Method for Suzuki-Sato’s CGS
Algorithm Using Stability of Gröbner Bases

In this section, we give the detail of our main results. First, we show another difficulty of CGS1 and
its existing solution (Nabeshima’s method).

4.1 Nabeshima’s Approach
Nabeshima [13] proposed a smart method for speeding-up CGS1. It uses the following property,
which often holds in (K[Ā])[X̄]

For a Gröbner basis G in (K[Ā])[X̄],

there exist distinct g and g′ ∈ G such that HT<X̄
(g) | HT<X̄

(g′) (*2)

If the coefficient ring is a field K, the reduced Gröbner basis never has property (*2). However
it often holds when the coefficient ring is a Noetherian ring which is not a field. In particular, even
though we compute the reduced Gröbner basis in K[Ā, X̄] with respect to the elimination order
such that Ā � X̄, the basis often has property (*2) as a Gröbner basis in (K[Ā])[X̄]. If the property
(*2) holds, CGS1 works toward generating many superfluous segments, so that the total efficiency
becomes worse. In order to avoid this, Nabeshima introduced Gröbner basis computation in which
inequations (, 0) are treated. In (*2), if we assume HC<X̄

(g) , 0, we must not consider the
condition of HC<X̄

(g′).

Example 34
This example is taken from Nabeshima [13].
For G = { f1, f2, f3} = {aX3, bX2, cX} ⊂ (Q[a, b, c])[X], let a, b, c be parameters, and let X be a
variable.

G ⊂ K[a, b, c, X] is already the reduced Gröbner basis with respect to the elimination order
<{a,b,c},{X} such that {a, b, c} � {X}. This implies that G is also a Gröbner basis with respect to <{X}

Communications of JSSAC Vol. 1 55

in (Q[a, b, c])[X]. Then we have HT<{X} (f2) | HT<{X} (f1), HT<{X} (f3) | HT<{X} (f2), and HT<{X} (f3) |
HT<{X} (f1), so that we can see that (*2) holds.

Suzuki-Sato’s algorithm basically works as Fig. 2 when we compute a CGS of G by the algo-
rithm, and finally obtain 16 segments.

Fig. 2:

Even though we apply all manipulations given in Section 3, we finally obtain 8 segments.


{cX} if a = 0, bc , 0
{cX} if a = b = 0, c , 0
{cX} if b = 0, ac , 0
{bX2} if a = c = 0, b , 0


∅ if a = b = c = 0
{aX3} if b = c = 0, a , 0
{bX2} if c = 0, ab , 0
{cX} if abc , 0

Next, we will consider an application of inequations (, 0). Once we have obtained HT<{X} (f3) |
HT<{X} (f2), HT<{X} (f3) | HT<{X} (f1), and HT<{X} (f2) | HT<{X} (f1), we can assume that b , 0 or c , 0.
In this situation, if we assume c , 0, we can ignore the condition of a and b. Thus a Gröbner basis
of 〈G〉 is G1 = {cX} if c , 0.

We next consider the case c = 0 (V(c)). For G{c=0} = { f1, f2} = {aX3, bX2}, we have obtained
HT<{X} (f2) | HT<{X} (f1), so that we assume that b , 0 (V(c)\V(b)). Then we can ignore the condition
of a, and a Gröbner basis of 〈G〉 is G2 = {bX2}.

Finally we consider the case c = 0, b = 0 (V(b, c)). G{b=0,c=0} = { f1} = {aX3} is already a
Gröbner basis of 〈G〉. In particular, a Gröbner basis is G3 = {aX3} if a , 0 (V(b, c) \ V(a)), and
G4 = ∅ if a = 0 (V(a, b, c)). This argument is illustrated as Fig. 3.

56 Communications of JSSAC Vol. 1

Fig. 3:

We eventually see that the following 4 segments suffice to form a CGS of 〈G〉.
G1 = {cX} if c , 0
G2 = {bX2} if b , 0, c = 0
G3 = {aX3} if a , 0, b = c = 0

G4 = ∅ if a = b = c = 0

In order to apply this idea, Nabeshima’s method computes a Gröbner basis together with a new
temporary variable r.

Theorem 35 (Nabeshima 2007)
Let R = K[Ā], I an ideal in R[X̄], and H = {g, g1, . . . , gl} be a Gröbner basis of I with respect
to <X̄ . Then select g from H, and we regard the variable r as r = 1/HC<X̄

(g) where r is a new
temporary variable except Ā and X̄, and let g′ = HT<X̄

(g) + r · (g − HM<X̄
(g)). Furthermore, for

H′ = (H \ {g})∪{g′} = {g′, g1, . . . , gl} ⊂ (K[r, Ā])[X̄], let G′ be a Gröbner basis of 〈H′〉 with respect
to <X̄ . Then for

G = { f ∈ R[X̄] | f , 0, f = HC<X̄
(g)k · σ{r= 1

HC<X̄
(g) }(q), degr(q) = k, q ∈ G′}

and {h1, . . . , he} = {HC<X̄
(f) ∈ R | f ∈ G}, σā(G) is a Gröbner basis of 〈σā(I)〉 with respect to

<X̄ for any ā ∈ Lm \ (V(HC<X̄
(g)) ∪ V(h1) ∪ · · · ∪ V(he)) = Lm \ V

(
LCM(HC<X̄

(g), h1, . . . , he)
)
.

(σ{r= 1
HC<X̄

(g) }(q) means substituting 1/HC<X̄
(g) for the variable r in q)

An outline of Nabeshima’s method is as follows. For (F,Nz, p), F ⊂ (K[r, Ā])[X̄] is a finite set,
Nz ⊂ K[Ā] is a finite set of non-zero condition polynomials, and p ⊂ K[Ā] is a current non-zero
condition polynomial.

Communications of JSSAC Vol. 1 57

Algorithm 36
NabCGS(F,Nz, p)

1. Compute a Gröbner basis G′ ⊂ (K[r, Ā])[X̄] of F with respect to <X̄ . This computation is
produced by Gröbner basis computation on K[r, Ā, X̄] with the elimination term order such that
({r} ∪ Ā) � X̄.

2. If p , 0, then let G = { f ∈ (K[Ā])[X̄] | f , 0, f = pk · σ{r= 1
p }(q), degr(q) = k, q ∈ G′}.

Otherwise let G = G′.

3. Let E = { f ∈ G \ K[Ā] | ∃ f ′ ∈ G \ { f } such that HT<X̄
(f) | HT<X̄

(f ′)}. If E , ∅, then go to step
4. Otherwise go to step 7.

4. Select the g from E such that HT<X̄
(g) is the smallest in HT<X̄

(E) with respect to <X̄ .

5. Let g′ = HT<X̄
(g) + r · (g − HM<X̄

(g)) and F′ = (F \ {g}) ∪ {g′}.

6. Apply this procedure recursively to (F′,Nz ∪ {HC<X̄
(g)},HC<X̄

(g)) and
(G ∪ {HC<X̄

(g)},Nz, 0).

7. If 〈G〉 = 〈1〉, then returnH .

8. Let {h1, . . . , hl} =
∪

f∈G\K[Ā]

Factors(HC<X̄
(f)).

9. Let h = h1 · · · · · hl, and add a segment (F ∩ K[Ā], {h},G) toH .

10. Apply this procedure recursively to each (G ∪ {hi},Nz, 0) where 1 ≤ i ≤ l.

More detail of NabCGS can be found in [13]. In NabCGS, step 1 and 7–10 are essentially the
same as CGS1. That is, if the variable E is empty, which means that G \ K[Ā] does not satisfy
(*2), then NabCGS works the same as CGS1. This computation can reduce the number of segments
against an output of CGS1 in many cases, however it may generate time-consuming Gröbner basis
computation (in the step 1–6) by increasing variables. We will see the detail in Section 4.4.

Now, what is a method which prevents (*2) from making a lot of unnecessary segments without
increasing variables? In the next subsection, we give a solution for this question.

4.2 Another Stability Criterion
In Example 34, for the output CGS of G = { f1, f2, f3} = {aX3, bX2, cX} by CGS1, the parameter
condition of segment whose serial number is (1) is a , 0, b , 0, c , 0. On the other hand,
we have already known that it suffices to consider c , 0. Selecting f3 first is caused by that
HT<{X}(f3) = X is “smallest” and it can divide the head term of another polynomials. So that
we can reduce the number of conditions which should be considered. In order to illustrate this
argument more generally, we recall the following well known notion.

Definition 37
For α1 and α2 ∈ T (X̄), the divisibility relation �div on T (X̄) is defined as follows.

α1 �div α2 ⇐⇒ there exist β ∈ T (X̄) such that α2 = α1β.

Then �div becomes a partial order on T (X̄).

58 Communications of JSSAC Vol. 1

In other words, selecting f3 from G is caused by that {X} is the minimal basis of HT<X̄
(G) =

{X3, X2, X} with respect to divisibility relation. Furthermore, {X} becomes minimal basis of
HT<X̄

(σā(G)) for σā if ā ∈ L3 \ V(c). (It is not necessary to consider a condition of a and b)

In general, for a given Gröbner basis G ⊂ R[X̄], σ(G) also become a Gröbner basis in K[X̄] for
a specialization σ which unchanges the minimal basis of HT<X̄

(G).

Theorem 38
Let R = K[Ā], let I be an ideal in R[X̄], and let G = {g1, . . . , gs} be a Gröbner basis of I with
respect to <X̄ . Moreover, MHT<X̄

(G) denotes the minimal basis of HT<X̄
(G) in T (X̄) with respect to

the divisibility relation, that is MHT<X̄
(G) = {HT<X̄

(g) ∈ T (X̄) | HT<X̄
(g′) - HT<X̄

(g), HT<X̄
(g′) ,

HT<X̄
(g), g, g′ ∈ G}. If a specialization σ satisfies

σ(HC<X̄
(g)) , 0 for any g ∈ G such that HT<X̄

(g) ∈ MHT<X̄
(G),

then σ(G) is a Gröbner basis of 〈σ(I)〉 with respect to <X̄ .

Proof By Theorem 3, it is enough to show that I is stable under the σ and <X̄ , that is we show
that

〈σ(〈HM<X̄
(I)〉)〉 = 〈HM<X̄

(σ(I))〉.
〈σ(〈HM<X̄

(I)〉)〉 ⊂ 〈HM<X̄
(σ(I))〉 is obvious. In order to show the reverse inclusion, it is enough

to show that 〈σ(HM<X̄
(g1)), . . . , σ(HM<X̄

(gs))〉 ⊃ 〈HM<X̄
(σ(I))〉. Namely, it is enough to show that

for f ∈ I with σ(f) , 0,

there exists HT<X̄
(gi) such that HT<X̄

(gi) divides HT<X̄
(σ(f)) and σ(HC<X̄

(gi)) , 0,
where 1 ≤ i ≤ s.

(*3)

We do the proof by induction on <X̄ .
(Induction basis)

If HT<X̄
(f) = 1, σ(f) , 0 implies that HC<X̄

(σ(f)) = σ(HC<X̄
(f)).

Thus HT<X̄
(σ(f)) = HT<X̄

(f) is divisible by some terms in {HT<X̄
(g1), . . . ,HT<X̄

(gs)}.
(Induction step)

We assume that (*3) holds for polynomials whose head terms are smaller than HT<X̄
(f) with

respect to <X̄ .
If σ(HC<X̄

(f)) , 0, HC<X̄
(σ(f)) = σ(HC<X̄

(f)) is obvious. Thus HT<X̄
(σ(f)) = HT<X̄

(f) is
divisible by some terms in {HT<X̄

(g1), . . . ,HT<X̄
(gs)}.

Finally, we consider the case σ(HC<X̄
(f)) = 0. From the definition of σ and f ∈ I, we have

HT<X̄
(g) | HT<X̄

(f) and σ(HC<X̄
(g)) , 0 for some g ∈ G such that HT<X̄

(g) ∈ MHT<X̄
(G). Then for

the g, defining

f ′ = HC<X̄
(g) f − HC<X̄

(f)
HT<X̄

(f)
HT<X̄

(g)
g,

we obtain HT<X̄
(σ(f ′)) = HT<X̄

(σ(f)) and HT<X̄
(f ′) <X̄ HT<X̄

(f).
Hence, by the induction hypothesis, HT<X̄

(σ(f ′)) is divisible by some terms in
{HT<X̄

(g1), . . . ,HT<X̄
(gs)}. This implies that HT<X̄

(σ(f)) is also divisible by these.

This theorem can be extended to the following corollary.

Corollary 39
Let R = K[Ā], I an ideal in R[X̄], and G = {g1, . . . , gs} be a Gröbner basis of I with respect to
<X̄ . We assume that the gis are ordered in such a way that g1, . . . , gr < R for 1 ≤ r ≤ s and
gr+1, . . . , gs ∈ R, and let G′ = {g1, . . . , gr}. If a specialization σ satisfies that

Communications of JSSAC Vol. 1 59

σ(gr+1) = · · · = σ(gs) = 0 and
σ(HC<X̄

(g)) , 0 for any g ∈ G′ such that HT<X̄
(g) ∈ MHT<X̄

(G′), (*4)

then σ(G′) is a Gröbner basis of 〈σ(I)〉with respect to <X̄ . Moreover, the specialization σā induced
by ā ∈ Lm satisfies (*4) if and only if

ā ∈ V(gr+1, . . . , gs) \
(
V(h1) ∪ · · · ∪ V(hl)

)
,

where {h1, . . . , hl} = {g ∈ G′ | HT<X̄
(g) ∈ MHT<X̄

(G′)}.

Example 40
Let G = { f1, f2, f3, f4, f5} = {a1,1XY2+a1,2XY +a1,3X, a2,1XY, a3,1X3+a3,2XY, a4,1X2Y +a4,2XY +
a4,3Y, a5,1X2+a5,2XY} ⊂ (K[Ā])[X, Y] be a Gröbner basis with respect to the total degree order <X̄ .
Thus, the minimal basis of HT<X̄

(G) is {HT<X̄
(f2), HT<X̄

(f5)} = {XY, X2}. Then, using Corollary
39, for any

ā ∈ Lm \ V(a2,1 · a5,1),

σā(G) is a Gröbner basis of 〈σā(G)〉 with respect to <X̄ . Note that we need not to consider condi-
tions of ai, j appeared in f1, f3, and f4.

In order to improve the efficiency, we rewrite Corollary 39 by using factorization.

Corollary 41
Let R = K[Ā], I an ideal in R[X̄], and G = {g1, . . . , gs} be a Gröbner basis of I with respect to <X̄ .
We assume that gis are ordered in such a way that g1, . . . , gr < R for 1 ≤ r ≤ s and gr+1, . . . , gs ∈ R,
and let G′ = {g1, . . . , gr}. Then the specialization σā induced by ā ∈ Lm satisfies (*4) if and only if

ā ∈ V(gr+1, . . . , gs) \ V(p1 · · · pt), (∗5)

where {p1, . . . , pt} is the union of prime factors of {g ∈ G′ | HT<X̄
(g) ∈ MHT<X̄

(G′)}.

4.3 The Algorithm Using Another Stability Criterion
In this subsection, we show a new algorithm for computing a CGS into which we incorporate the
results of Section 4.2.

First, using Corollary 41, we give an algorithm which outputs a determined segment as ones in
the final CGS and parameter spaces which should be computed next.

Algorithm 42
NewBranches(G, <Ā, <X̄)

INPUT: A Gröbner basis G in K[Ā, X̄], and term orders <Ā and <X̄ .
OUTPUT: A pair (S,N). S forms a set of determined segments, and N forms a

set of parameter spaces which should be computed next.

BEGIN
GĀ ← G ∩ K[Ā];
GX̄ = {g1, . . . , gr} ← G \ K[Ā];
Tmin ← MHT(GX̄ , <X̄); · · · (1)
Cmin ← {HC<X̄

(g) ∈ K[Ā] | HT<X̄
(g) ∈ Tmin, g ∈ GX̄};

{p1, . . . , pt} ←
∪

f∈Cmin

Factors(f);

N ←
{
{p1}, . . . , {pt}

}
;

60 Communications of JSSAC Vol. 1

B← {p1 · · · · · pt};
IF CaseIsZero((GĀ, B), <Ā) = false THEN

S ← {(GĀ, B,GX̄)};
IF VarietyIsDisjoint(GĀ, B, <Ā) = true THEN · · · (2)

return (S, ∅);
END IF

ELSE
S ← ∅;

END IF
return (S,N);

END

Remark 43
We have the following remarks in the algorithm NewBranches.

(1) MHT(G, <X̄) computes the minimal divisibility basis of HT<X̄
(G).

(2) This IF sentence is the same treatment as (2) of Remark 6 (cf. CGS1).

We show a new algorithm for computing a CGS using the algorithm NewBranches.

Algorithm 44
NewCGS_Main((a1, . . . , ad), F, <Ā,X̄)

INPUT: A d-tuple (a1, . . . , ad) of natural numbers, a finite set F ⊂ K[Ā, X̄], a
term order <Ā,X̄ .

OUTPUT: A set H of segments (No, S ,T,G), where No ∈ Nk, S , T ⊂ K[Ā], and
G is the reduced Gröbner basis in K[Ā, X̄].

BEGIN
H ← ∅;
G ← ReducedGB(F, <Ā,X̄);
IF CaseIsZero((F ∩ K[Ā],G ∩ K[Ā]), <Ā) = false THEN

H ← H ∪
{(

(a1, . . . , ad), F ∩ K[Ā],G ∩ K[Ā], {1}
)}

;
END IF
IF 1 ∈ G THEN

returnH ;
END IF
(S,N)← NewBranches(G, <Ā, <X̄);
IF S , ∅ THEN

H ← H ∪
{(

(a1, . . . , ad), S ,T,G
)}

;
(
(S ,T,G) ∈ S

)
END IF
i = 1;
FOR EACH {p1, . . . , pt} ∈ N DO

H ← H ∪ NewCGS_Main((a1, . . . , ad, i),G ∪ {p1, . . . , pt}, <Ā,X̄);
i = i + 1;

END FOR
returnH ;

END

Algorithm 45
NewCGS(F, <X̄ , <Ā)

INPUT: A finite set F ⊂ K[Ā, X̄], and term orders <X̄ and <Ā.
OUTPUT: A set H of segments (No, S ,T,G), where No ∈ Nk, S , T ⊂ K[Ā], and

G is the reduced Gröbner basis in K[Ā, X̄].

Communications of JSSAC Vol. 1 61

BEGIN
<Ā,X̄ ← the elimination order induced by <Ā and <X̄ such that Ā � X̄;
IF F ∩ K[Ā] , ∅ THEN

H ←
{(

(1), ∅, F ∩ K[Ā], {1}
)}

;
ELSE

H ← ∅;
END IF
H ← H ∪ NewCGS_Main((1), F, <Ā,X̄);
returnH ;

END

Theorem 46
For any given finite subset F ⊂ (K[Ā])[X̄], and term orders <X̄ and <Ā, the algorithm NewCGS(F, <X̄
, <Ā) always terminates, and outputs a CGS of F with respect to <X̄ .

Proof We prove the following three claims.

1. The algorithm always terminates.

2. For every segment (No, S ,T,G), σā(G) is a Gröbner basis of 〈σā(F)〉 with respect to <X̄ for
any ā ∈ V(S) \ V(T).

3. The union of every parameter space of a segment in the outputH coincides with Lm, that is∪
(No,S ,T,G)∈H

V(S) \ V(T) = Lm

The claim 1 and 3 are proved in the same way as proof of Theorem 2.3 of [20]. The claim 2 is
obvious from Corollary 39.

4.4 Comparisons
In this subsection, we compare our new algorithm NewCGS with Nabeshima’s implementation. We
have implemented NewCGS in Risa/Asir [14]. The procedure is written in the user language of
Risa/Asir. Nabeshima also has implemented NabCGS in the user language of Risa/Asir. In order to
make the performance of Gröbner basis computation equal, we revise Nabeshima’s implementation
so that it uses the new built-in function for Gröbner basis computation (nd_gr_trace) instead of
the old one (dp_gr_main).

The details of problems used in this section and the computational environment can be found
in Appendix A. The results is shown in Table 6 and 7. In the tables, both our implementation
and Nabeshima’s one equipped Suzuki-Sato’s original algorithm (cf. CGS1). Comparing both the
timings of CGS1, we can see a difference of the performance between both CGS1. NabCGS[s],(s ∈
N) means the selection strategy presented in [13]. In the algorithm NabCGS, we remember that
the step 4 selects the smallest polynomial in E. In NabCGS[s], the step 4 selects the smallest
polynomial in Es = { f ∈ E | #(M(f)) ≤ s} instead of E, where #(M(f)) is the number of monomials
in f .

In S 2, the inefficiency of NabCGS, NabCGS[2] or NabCGS[3] is caused by an existence of time-
consuming Gröbner basis computation. This computation is made in the step 1–6 of NabCGS. In
this computation, a polynomial appeared in the intermediate computations have a large coefficients,
that is it consists of 62555 monomials and the sum of bit length of its coefficients is 28230054

62 Communications of JSSAC Vol. 1

Problem Implementation Option Time (sec.) Segment
S1 New CGS1 296.08 27

NewCGS 10.85 5
Nabeshima CGS1 150.97 36

NabCGS >25min. ***
NabCGS[1] 465.49 36
NabCGS[2] 452.38 36
NabCGS[3] 521.65 36

S2 New CGS1 1.912 22
NewCGS 0.956 17

Nabeshima CGS1 1.596 32
NabCGS >25min. ***

NabCGS[1] 9.469 35
NabCGS[2] >25min. ***
NabCGS[3] >25min. ***

S3 New CGS1 2.952 17
NewCGS 2.952 17

Nabeshima CGS1 5.812 25
NabCGS >25min. ***

NabCGS[1] 6.768 27
NabCGS[2] 7.989 42
NabCGS[3] >25min. ***

S4 New CGS1 9.22 33
NewCGS 1.25 19

Nabeshima CGS1 47.20 55
NabCGS >25min. ***

NabCGS[1] >25min. ***
NabCGS[2] >25min. ***
NabCGS[3] >25min. ***

M1 New CGS1 1.316 73
NewCGS 0.704 64

Nabeshima CGS1 1.764 249
NabCGS >25min. ***

NabCGS[1] 6.028 196
NabCGS[2] >25min. ***
NabCGS[3] >25min. ***

M2 New CGS1 0.020 9
NewCGS 0.020 9

Nabeshima CGS1 0.008 16
NabCGS >25min. ***

NabCGS[1] 0.016 12
NabCGS[2] 0.020 13
NabCGS[3] >25min. ***

Table 6:

Communications of JSSAC Vol. 1 63

Problem Implementation Option Time (sec.) Segment
N1 New CGS1 0.83 16

NewCGS 0.22 8
Nabeshima CGS1 93.78 875

NabCGS 0.11 17
NabCGS[1] 77.44 621
NabCGS[2] 0.30 53
NabCGS[3] 0.13 17

N2 New CGS1 10.41 33
NewCGS 1.37 20

Nabeshima CGS1 >25min. ***
NabCGS >25min. ***

NabCGS[1] 48.20 458
NabCGS[2] >25min. ***
NabCGS[3] >25min. ***

Table 7:

(roughly 8500000 digits). On the other hand, In NewCGS, the maximum number of monomials in
all polynomials appeared in the intermediate computations is 47 and the maximum bit length of
coefficients in all polynomials is 507 (roughly 150 digits). In NabCGS[1], the step 1–6 is called
425 times and the step 1 and 7–10 is called 604 times during the computation, so that roughly
speaking, 59% of the computation works as CGS1.

Our new algorithm is not always faster than the others. One of the reasons of this observation
is overhead for manipulations for parameter spaces. For instance, in M2, this is a reason why each
CGS1 in “New” and “Nabeshima” is the fastest respectively.

5 Conclusion
This paper presents basic manipulations for parameter space appeared in a CGS algorithm based
on Suzuki-Sato’s and introduces a method for optimizing the property (*2) without an additional
variable. Nabeshima’s method always uses an additional variable for Gröbner basis computation.
This computation often suffers from intermediate coefficient swell. Our new approach does not use
an additional variable, and frequency of intermediate coefficient swell is relatively small.

Finally, our new CGS implementation will be found in OpenXM Risa/Asir-contrib.

References
[1] Becker, T. and Weispfenning, V. Gröbner Bases. GTM 141, Springer, 1993.

[2] Cox, D., Little, J. and O’Shea, D. Ideals, Varieties, and Algorithms, Third Edition. UTM,
Springer, 2007.

[3] Gebauer, R. and Möller, H.M. On an installation of Buchberger’s algorithm. J. Symbolic
Computation. Vol. 6/2-3, pp. 275–286. 1988.

64 Communications of JSSAC Vol. 1

[4] Giovini, A., Mora, T., Niesi, G., Robbiano, L. and Traverso, C. “One sugar cube, please” OR
Selection strategies in the Buchberger algorithm. Proc. International Symposium on Symbolic
and Algebraic Computation (ISSAC ’91). ACM Press, New York, pp. 49–54. 1991.

[5] Kalkbrener, M. On the Stability of Gröbner Bases Under Specializations. J. Symbolic Com-
putation. Vol. 24/1, pp. 51–58. 1997.

[6] Kanno, M., Anai, H., Yokoyama, K., and Hara, S. Prametric Optimization in Control Using
the Sum of Roots for Parametric Polynomial Spectral Factorization. Proc. International Sym-
posium on Symbolic and Algebraic Computation (ISSAC ’07). ACM Press, New York, pp.
211–218. 2007.

[7] Kurata, Y. and Noro, M. Computation of Discrete Comprehensive Gröbner Bases Using Mod-
ular Dynamic Evaluation. Proc. International Symposium on Symbolic and Algebraic Com-
putation (ISSAC ’07). ACM Press, New York, pp. 243–250. 2007.

[8] Manubens, M. and Montes, A. Improving the DISPGB algorithm using the discriminant ideal.
J. Symbolic Computation. Vol. 41/11, pp. 1245–1263. 2006.

[9] Möller, H.M. On the Construction of Gröbner Bases Using Syzygies. J. Symbolic Computa-
tion. Vol. 6/2-3, pp. 345–359. 1988.

[10] Montes, A. A new algorithm for discussing Gröbner bases with parameters. J. Symbolic Com-
putation. Vol. 33/2, pp. 183–208. 2002.

[11] Nabeshima, K. A Direct Products of Fields Approach to Comprehensive Gröbner Bases over
Finite Fields. Proc. International Symposium on Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC 2005), IEEE Computer Society Press, pp. 39–47. 2005.

[12] Nabeshima, K. Reduced Gröbner bases in polynomial rings over a polynomial ring. Interna-
tional Conference on Mathematical Aspects of Computer and Information Sciences (MACIS
2006) (Wang, D. and Zheng, Z., editors), pp. 15–32. 2006.

[13] Nabeshima, K. A Speed-Up of the Algorithm for Computing Comprehensive Gröbner Sys-
tems. Proc. International Symposium on Symbolic and Algebraic Computation (ISSAC ’07).
ACM Press, New York, pp. 299–306. 2007.

[14] Noro, M. et al. A Computer Algebra System Risa/Asir.
http://www.math.kobe-u.ac.jp/Asir/asir.html. 2009.

[15] Sato, Y., Suzuki, A and Nabeshima, K. Discrete Comprehensive Gröbner Bases II. Computer
Mathematics, Proc. 6th Asian Symposium (ASCM 2003), Lecture Notes Series on Computing
Vol. 10, World Scientific, pp. 240–247. 2003.

[16] Sato, Y., Suzuki, A and Nabeshima, K. ACGB on Varieties. Proc. 6th International Workshop
on Computer Algebra in Scientific Computing (CASC 2003), pp. 313–318. 2003.

[17] Sato, Y. Stability of Gröbner bases and ACGB. Proc. Algorithmic Algebra and Logic 2005
(Conference in Honor of the 60th Birthday of Volker Weispfenning), Books on Demand
GmbH, pp. 223–228. 2005.

[18] Shinohara, N. Parametric Polynomial Spectral Factorization. Bulletin of the Japan Society for
Symbolic and Algebraic Computation (in Japanese). Vol.16/1, pp. 3–19. 2009.

Communications of JSSAC Vol. 1 65

[19] Suzuki, A. and Sato, Y. An alternative approach to Comprehensive Gröbner Bases. J. Sym-
bolic Computation. Vol. 36/3-4, pp. 649–667. 2003.

[20] Suzuki, A. and Sato, Y. A Simple Algorithm to Compute Comprehensive Gröbner Bases Us-
ing Gröbner Bases. Proc. International Symposium on Symbolic and Algebraic Computation
(ISSAC ’06), ACM Press, New York, pp. 326–331. 2006.

[21] Traverso, C. Gröbner trace algorithms. Proc. International Symposium on Symbolic and Al-
gebraic Computation (ISSAC ’88), Springer-Verlag, London, pp. 125–138. 1988.

[22] Weispfenning, V. Comprehensive Gröbner bases. J. Symbolic Computation. Vol. 14/1, pp.
1–29. 1992.

[23] Weispfenning, V. Canonical comprehensive Gröbner bases. J. Symbolic Computation. Vol.
36/3-4, pp. 669–683. 2003.

A Problems for Comparisons
In this paper, we use following problems for comparisons. All measures are taken on a Linux PC
with Intel Xeon X5470 at 3.33GHz and 32GB of memory.

• S1
{X5 − a,Y6 − b, X + Y − Z}

In the case, X,Y,Z and a, b are variables and parameters respectively, and the term oder is the
lexicographic such that X > Y > Z.

• S2

{P, Q, (X1 − X2)2 + (Y1 − Y2)2 − S ,
∂P
∂X1

∂Q
∂Y2
− ∂P
∂Y1

∂Q
∂X2
,
∂P
∂X1

(Y1 − Y2) − ∂P
∂Y1

(X1 − X2)}

with P = aX2
1 + bY1 and Q = cY2

2 + dX2. In the case, X1, X2,Y1,Y2, S are variables and the term
order is the lexicographic such that X1 > X2 > Y1 > Y2 > S .

• S3
The same polynomial set as S 2 with P = X2

1 + Y2
1 + a and Q = Y2 − bX2

2 + c. The others
conditions are similar to S 2.

• S4

{P − Z, X2 + Y2 + Z2 − S , X +
∂P
∂X

Z, Y +
∂P
∂Y

Z}

with P = (X − a)2 + bY2 + b. In the case, X,Y,Z, S and a, b are variables and parameters
respectively, and the term order is the lexicographic such that X > Y > Z > S .

• S5
The same polynomial set as S 4 with P = (X − a)2 + bY2 + c. In the case, a, b, c are parameters,
and the others conditions are similar to S 4.

• S6
The same polynomial set as S 4 with P = (X − a)2 + bY2 + a2 − b. The others conditions are
similar to S 4.

66 Communications of JSSAC Vol. 1

• M1

{a + dS 1, b − dC1, l2C2 + l3C3 − d, l2S 2 + l3S 3 − c, S 2
1 +C2

1 − 1, S 2
2 +C2

2 − 1, S 2
3 +C2

3 − 1}

In the case, S 1,C1, S 2,C2, S 3,C3 and a, b, c, d are variables and parameters respectively, and
the term order is the lexicographic such that S 1 > C1 > S 2 > C2 > S 3 > C3.

• M2
{aX2Y + a + 3b2, a(b − c)XY + abX + 5c}

In the case, X,Y and a, b, c are variables and parameters respectively, and the term order is the
lexicographic such that X > Y .

• N1
{X4 + aX3 + bX2 + cX + d, 4X3 + 3aX2 + 2bX + c}

In the case, X is a variable and a, b, c, d are parameters.

• N2
{aX2 + bY, cW2 + Z, (X − Z)2 + (Y −W)2, 2dXW − 2bY}

In the case, X,Y,Z,W and a, b, c, d are variables and parameters respectively, and the term order
is the lexicographic such that X > Y > Z > W.

Each set lies in a polynomial ring over Q. These problems are taken from literature: The
polynomial sets S 1, S 2, S 3, S 4, S 5 and S 6 are taken from Section 4 of Suzuki and Sato [20], M1
and M2 are taken from Section 5 of Manubens and Montes [8], N1 and N2 are taken from Section
5 in Nabeshima [13].

	Introduction
	Notations, Definitions and the Original Algorithm
	Basic Manipulations for CGS Implementation
	Preliminary
	Using Square Free Computation and Factorization
	Using Minimal Gr�bner Basis on (K["7016A])["7016X]
	Eliminating Duplicated Parameter Spaces
	Using Prime Ideal Decomposition
	Using the Stability Condition of Zero-dimensional Radical Ideals

	An Efficient Method for Suzuki-Sato's CGS Algorithm Using Stability of Gr�bner Bases
	Nabeshima's Approach
	Another Stability Criterion
	The Algorithm Using Another Stability Criterion
	Comparisons

	Conclusion
	Problems for Comparisons

